Skip to main content
Log in

Original methodology and nomography tool for dimensioning multi-packed-bed dehumidifiers

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This work deals with the dimensioning of multi-packed-bed dehumidifiers used in solar air-conditioning systems. An efficient dimensioning methodology is elaborated, explained and visualized by a chart. The proposed methodology permits to ensure an appropriate packed-bed dimensioning based on a compromise between the highest possible amount of heat and mass transfer and the lowest possible level of pressure drop within a packed-bed-dehumidifier. Nomography tool is implemented in order to simplify, speed up and expand the possibilities of dimensioning. The proposed nomographs permit to determine the appropriate values of the diameter, the porosity and the height of the packed-bed. The mathematical construction techniques of all nomographs are presented in detail. Applied examples are carried out in order to show the effectiveness of each nomograph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

C pa :

Air specific heat, (J.kg−1.K−1)

C ps :

Deicccant specific heat, (J.kg−1.K−1)

C pv :

Water vapor specific heat, (J.kg−1.K−1)

C pw :

Water specific heat, (J.kg−1.K−1)

D :

Bed diameter, (m)

D 0 :

Water vapor diffusivity, (m2.s−1)

D e :

Effective diffusivity, (m2.s−1)

d p :

Desiccant particle diameter, (m)

E 0 :

Activation energy, (J.mol−1)

H :

Bed height, (m)

N :

Number of beds constituting the dehumidifier system, (.)

q :

Desiccant moisture content (kg[H2O].kg−1[dry desiccant])

q :

Equilibrium desiccant moisture content (kg[H2O].kg−1[dry desiccant])

R :

Perfect gas constant, (J.mol−1.K−1)

T inlet :

Inlet air temperature, (°C)

V :

Air velocity, (m/s)

VR :

Ventilation rate, (m3/s)

ΔH ads :

Latent heat of evaporation (J.kg−1)

ΔP a :

Maximum allowable pressure drop, (Pa)

ε :

Bed porosity, (.)

λ a :

Air thermal conductivity, (W.m−1.K−1)

λ s :

Desiccant thermal conductivity, (W.m−1.K−1)

μa :

Air dynamic viscosity, (Pa.s)

ρ a :

Air density, (kg.m−3)

ρ s :

Desiccant density, (kg.m−3)

Ø :

Air relative humidity, (%)

ω :

Air humidity ratio, (kg[water vapor].kg−1[dry air])

δ 1, δ 3, μ 1, μ 3 :

Functional Moduli (scale factors)

References

  1. Harriman LG (2002) Dehumidification handbook. Munters Corporation, Amesbury

    Google Scholar 

  2. Holcomb F, Sohn C, Torrey M, Westerman J (2000) Desiccant cooling technology-resource guide. U.S. Army Construction Engineering Research Laboratory

  3. Misha S, Mat S, Ruslan MH, Sopian K (2012) Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renew Sust Energ Rev 16(7):4686–4707. https://doi.org/10.1016/j.rser.2012.04.041

    Article  Google Scholar 

  4. Zheng X, Ge TS, Wang RZ (2014) Recent progress on desiccant materials for solid desiccant cooling systems. Energy 74:280–294. https://doi.org/10.1016/j.energy.2014.07.027

    Article  Google Scholar 

  5. Critenden B, Thomas WJ (1998) Adsorption technology and design. Butterworth-Heinemann, Oxford

    Google Scholar 

  6. Ruthven DM (2006) Fundamentals of adsorption equilibrium and kinetics in microporous solids. Molecular Sieves 7:1–43. https://doi.org/10.1007/3829_007

    Google Scholar 

  7. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  8. Nciri R, Ali C, Ben Bacha H (2013) Design and analysis of an original multi-bed dehumidifier used for air-conditioning prototype powered by solar energy. HVAC&R Res 19(6):732–743. https://doi.org/10.1080/10789669.2013.806174

    Google Scholar 

  9. Rebughini S, Cuoci A, Maestri M (2016) Hierarchical analysis of the gas-to-particle heat and mass transfer in micro packed bed reactors. Chem Eng J 289:471–478. https://doi.org/10.1016/j.cej.2015.12.089

    Article  Google Scholar 

  10. Lee CJ, Chou SM, Shuh SS (2011) Improved heat transfer in packed-beds. J Chin Inst Eng 3(2):133–137. https://doi.org/10.1080/02533839.1980.9676658

    Article  Google Scholar 

  11. Prudnikov NA, Brich MA, Raptunovich YS (1990) Numerical modeling of heat and mass transfer during the drying of granulated polymers in a packed bed. J Eng Phys 59(6):1591–1596. https://doi.org/10.1007/BF00870421

    Article  Google Scholar 

  12. Cresswell DL (1986) Heat transfer in packed bed reactors. Chem React Desi Technol 110:687–728. https://doi.org/10.1007/978-94-009-4400-8_17

    Article  Google Scholar 

  13. Dekhtyar RA, Sikovsky DP, Gorine AV, Mukhin VA (2002) Heat transfer in a packed bed at moderate values of the Reynolds number. High Temp 40(5):693–700. https://doi.org/10.1023/A:1020432619305

    Article  Google Scholar 

  14. Yang J, Bu S, Dong Q, Wu J, Wang Q (2015) Experimental study of flow transitions in random packed beds with low tube to particle diameter ratios. Exp Thermal Fluid Sci 66:117–126. https://doi.org/10.1016/j.expthermflusci.2015.03.018

    Article  Google Scholar 

  15. Sobti A, Wanchoo RK (2015) Creeping flow of viscoelastic fluid through a packed bed: effect of particle shape and porosity. Part Sci Technol 33(5):463–471. https://doi.org/10.1080/02726351.2015.1010759

    Article  Google Scholar 

  16. Chukin VV, Kuznetsov RF (1967) Gas distribution in a packed bed. J Eng Phys 13(1):45–48. https://doi.org/10.1007/BF00831750

    Google Scholar 

  17. Herrmann S, Kretzschmar HJ, Gatley DP (2011) Thermodynamic properties of real moist air, dry air, steam, water, and ice (RP-1485). HVAC&R Research 15(5):961–986. https://doi.org/10.1080/10789669.2009.10390874

    Article  Google Scholar 

  18. Jarzebski AB, Mrowiec-Bialon J (2015) Silica gel-based composite adsorbents. In: Somasundaran P (ed) Encyclopedia of surface and colloid science, 3rd edn. CRC Press, Boca Raton, pp 6593–6606

  19. Rahimi A, Babakhani D (2013) Mathematical modeling of a packed-bed air dehumidifier: the impact of empirical correlations. J Pet Sci Eng 108:222–229. https://doi.org/10.1016/j.petrol.2013.03.031

    Article  Google Scholar 

  20. Ertas A, Gandhidasan P, Kiris I, Andersonn EE, Dolan M (1997) Experimental investigations on the performance of a packed bed dehumidifier for various climatic conditions. Dry Technol 15(3–4):1061–1075. https://doi.org/10.1080/07373939708917277

    Article  Google Scholar 

  21. Nevins RG, McNall PE Jr (1973) ASHRAE thermal comfort standards. Build Res Pract 1(2):100–104. https://doi.org/10.1080/09613217308550225

    Article  Google Scholar 

  22. Yi X, Xu B, Feng X (2013) Influence of indoor air environment on human dynamic thermal comfort. In: Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, vol 261. p 507–513. https://doi.org/10.1007/978-3-642-39584-0_57

  23. Forgiarini Rupp R, Giraldo Vásquez N, Lamberts R (2015) A review of human thermal comfort in the built environment. Energ Buildings 105:178–205. https://doi.org/10.1016/j.enbuild.2015.07.047

    Article  Google Scholar 

  24. Vafai K (2015) Handbook of porous media. CRC Press, Boca Raton

    MATH  Google Scholar 

  25. Evesham HA (1982) The history and development of Nomography. Docent Press, Boston

    MATH  Google Scholar 

  26. Kerimov MK (1977) Osnovy nomografii (the principles of nomography): Khovanskii GS 352p. “Nauka”. USSR Comput Math Math Phys 17(6):267–268. https://doi.org/10.1016/0041-5553(77)90199-9

    Article  Google Scholar 

  27. Doerfler R (2009) The lost art of Nomography. UMAP J 30(4):457–493

    Google Scholar 

  28. Stitou D, Crozat G (1997) Dimensioning nomograms for the design of fixed-bed solid-gas thermochemical reactors with various geometrical configurations. Chem Eng Process 36:45–58. https://doi.org/10.1016/S0255-2701(96)04172-4

    Article  Google Scholar 

  29. Rabhi K, Ali C, Nciri R, Ben Bacha H (2015) Novel design and simulation of a solar air-conditioning system with desiccant dehumidification and adsorption refrigeration. Arab J Sci Eng 40(12):3379–3391. https://doi.org/10.1007/s13369-015-1839-y

    Article  Google Scholar 

  30. Sakoda A, Suzuki M (1984) Fundamental study on solar powered adsorption cooling system. J Chem Eng Japan 17(1):52–57. https://doi.org/10.1252/jcej.17.52

    Article  Google Scholar 

  31. Kadoma A, Hirayama T, Goto M, Hirose T, Critoph RE (2001) The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel. Appl Therm Eng 21:1657–1674. https://doi.org/10.1016/S1359-4311(01)00032-1

    Article  Google Scholar 

  32. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (2003) Ventilation for acceptable indoor air quality. Addendum n to ANSI/ASHRAE STANDARD 62–2001. ASHARE Handbook Fundamentals, Atlanta

  33. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (2004) Thermal environmental conditions for human occupancy. ANSI/ASHRAE STANDARD 55–2004. ASHARE Handbook Fundamentals, Atlanta

  34. Ribeiro AM, Neto P, Pinho C (2010) Mean porosity and pressure drop measurements in packed beds of Monosized spheres: Side Wall effects. Int Rev Chem Eng 2(1):40–46

    Google Scholar 

  35. Benyahia F, O’Neill KE (2005) Enhanced Voidage correlations for packed beds of various particle shapes and sizes. Part Sci Technol 23:169–177. https://doi.org/10.1080/02726350590922242

    Article  Google Scholar 

  36. Choi YS, Kim SJ, Kim D (2008) A semi-empirical correlation for pressure drop in packed beds of spherical particles. Transp Porous Media 75(2):133–149. https://doi.org/10.1007/s11242-008-9215-y

    Google Scholar 

  37. Mehrabian MA (2007) Heat transfer and pressure drop characteristics of cross flow of air over a circular tube in isolation and/or in a tube Bank. Arab J Sci Eng 32(2B):365–376

    Google Scholar 

  38. Kozeny J (1927) Über Kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss Vienna Austria 136(2a):271–306

    Google Scholar 

  39. Carman PC (1937) Fluid flow through granular beds. Chem Eng Res Des 75:S32–S48. https://doi.org/10.1016/S0263-8762(97)80003-2

    Article  Google Scholar 

  40. Carman PC (1956) Flow of gases through porous media. Academic Press, New York

    MATH  Google Scholar 

  41. Kyaw T, Bidyut BS, Anutosh C, Won GC, Kim CN (2011) Study on an advanced adsorption desalination cycle with evaporator–condenser heat recovery circuit. Int J Heat Mass Transf 54(1–3):43–51. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.065

    MATH  Google Scholar 

  42. Ben Amar N, Sun LM, Meunier F (1996) Numerical analysis of adsorptive temperature wave regenerative heat pump. Appl Therm Eng 16(5):405–418. https://doi.org/10.1016/1359-4311(95)00045-3

    Article  Google Scholar 

  43. Hensen JLM, Lamberts R (2011) Building performance simulation for design and operation. 1st edition. Spon Press, London

    Google Scholar 

  44. David AJ (2011) Designing for comfort: selecting air distribution outlets. ASHRAE Journal 53(9):38–46

Download references

Acknowledgements

We are grateful to the Higher Institute of Technological Studies of Gafsa-Tunisia and the Faculty of Sciences of Gafsa-Tunisia for their moral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rached Nciri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nciri, R., Rabhi, K., Nasri, F. et al. Original methodology and nomography tool for dimensioning multi-packed-bed dehumidifiers. Heat Mass Transfer 54, 2661–2673 (2018). https://doi.org/10.1007/s00231-018-2298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2298-2

Navigation