Skip to main content
Log in

A Low-Frequency Assumption for Optimal Time-Decay Estimates to the Compressible Navier–Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The global existence issue in critical spaces for compressible Navier–Stokes equations, was addressed by Danchin (Invent Math 141:579–614, 2000) and then developed by Charve and Danchin (Arch Rational Mech Anal 198:233–271, 2010), Chen et al. (Commun Pure Appl Math 63:1173–1224, 2010) and Haspot (Arch Rational Mech Anal 202:427–460, 2011) in more general Lp setting. The main aim of this paper is to exhibit (more precisely) time-decay estimates of solutions constructed in the critical regularity framework. To the best of our knowledge, the low-frequency assumption usually plays a key role in the large-time asymptotics of solutions, which was firstly observed by Matsumura and Nishida (J Math Kyoto Univ 20:67–104, 1980) in the \({L^1(\mathbb{R}^d)}\) space. We now claim a new low-frequency assumption for barotropic compressible Navier–Stokes equations, which may be of interest in the mathematical analysis of viscous fluids. Precisely, if the initial density and velocity additionally belong to some Besov space \({\dot{B}^{-\sigma_1}_{2,\infty}(\mathbb{R}^d)}\) with the regularity \({\sigma_1\in (1-d/2, 2d/p-d/2]}\), then a sharp time-weighted inequality including enough time-decay information can be available, where optimal decay exponents for the high frequencies are exhibited. The proof mainly depends on some non standard Besov product estimates. As a by-product, those optimal time-decay rates of LqLr type are also captured in the critical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    Google Scholar 

  2. Cannone M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoam. 13, 515–542 (1997)

    Article  MathSciNet  Google Scholar 

  3. Charve F., Danchin R.: A global existence result for the compressible Navier–Stokes equations in the critical L p framework. Arch. Rational Mech. Anal. 198, 233–271 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Chemin J.Y.: Théorèmes d’unicité pour le systè m de Navier–Stokes tridimensionnel. J. Anal. Math. 77, 27–50 (1999)

    Article  MathSciNet  Google Scholar 

  5. Chemin J.Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1995)

    Article  ADS  Google Scholar 

  6. Chen Q.L., Miao C.X., Zhang Z.F.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–1224 (2010)

    Article  MathSciNet  Google Scholar 

  7. Danchin R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Danchin, R.: Fourier Analysis methods for the compressible Navier–Stokes equations. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer International Publishing, Cham (2016)

    Google Scholar 

  9. Danchin R., He L.: The incompressible limit in L p type critical spaces. Math. Ann. 366, 1365–1402 (2016)

    Article  MathSciNet  Google Scholar 

  10. Danchin R., Xu J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical L p framework. Arch. Rational Mech. Anal. 224, 53–90 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Feireisl E., Novotny A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fiszdon W., Zajaczkowski W.M.: Existence and uniqueness of solutions of the initial boundary value problem for the flow of a baratropic viscous fluid, local in time. Arch. Mech. 35, 497–516 (1983)

    MATH  Google Scholar 

  13. Fujita H., Kato T.: On the Navier–Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  14. Guo Y., Wang Y.J.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  Google Scholar 

  15. Haspot B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Rational Mech. Anal. 202, 427–460 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hoff D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hoff D., Zumbrun K.: Multidimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 604–676 (1995)

    Article  Google Scholar 

  18. Jiang S., Zhang P.: Axisymmetric solutions of the 3D Navier–Stokes equations for compressible isentropic fluids. J. Math. Pure Appl. 82, 949–973 (2003)

    Article  MathSciNet  Google Scholar 

  19. Li H.L., Zhang T.: Large time behavior of isentropic compressible Navier–Stokes system in \({\mathbb{R}^3}\). Math. Methods Appl. Sci. 34, 670–682 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lions, P.L.: Mathematical topics in fluid mechanics, vol. 2. Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, 10. Clarendon, University Press, New York (1998)

  21. Liu T.P., Wang W.K.: The pointwise estimates of diffusion waves for the Navier–Stokes equations in odd multi-dimensions. Commun. Math. Phys. 196, 145–173 (1998)

    Article  ADS  Google Scholar 

  22. Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis, Kyoto University (1984)

  23. Kagei Y., Kobayashi T.: On large time behavior of solutions to the compressible Navier–Stokes equations in the half space in \({\mathbb{R}^3}\). Arch. Rational Mech. Anal. 165, 89–159 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kagei Y., Kobayashi T.: Asymptotic behavior of solutions of the compressible Navier–Stokes equations on the half space. Arch. Rational Mech. Anal. 177, 231–330 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kobayashi T.: Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in \({\mathbb{R}^3}\). J. Differ. Equ. 184, 587–619 (2002)

    Article  ADS  Google Scholar 

  26. Kobayashi T., Shibata Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain of \({\mathbb{R}^3}\). Commun. Math. Phys. 200, 621–659 (1999)

    Article  ADS  Google Scholar 

  27. Kozono H., Yamazaki M.: Semilinear heat equations and the Navier–Stokes equations with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)

    Article  MathSciNet  Google Scholar 

  28. Matsumura A., Nishida T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  Google Scholar 

  29. Matsumura A., Nishida T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  Google Scholar 

  30. Nash J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. Fr. 90, 487–497 (1962)

    Article  Google Scholar 

  31. Okita M.: Optimal decay rate for strong solutions in critical spaces to the compressible Navier–Stokes equations. J. Differ. Equ. 257, 3850–3867 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ponce G.: Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal. TMA 9, 339–418 (1985)

    Article  MathSciNet  Google Scholar 

  33. Serrin J.: On the uniqueness of compressible fluid motion. Arch. Rational Mech. Anal. 3, 271–288 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  34. Sohinger V., Strain R.M.: The Boltzmann equation, Besov spaces, and optimal time decay rates in \({\mathbb{R}^{n}_{x}}\). Adv. Math. 261, 274–332 (2014)

    Article  MathSciNet  Google Scholar 

  35. Solonnikov V.A.: Estimates of soutions to a nonstationnary Navier–Stokes system. Zap. Nauchn. Semin. LOMI 38, 153–231 (1973)

    Google Scholar 

  36. Valli A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130, 197–213 (1982)

    Article  MathSciNet  Google Scholar 

  37. Valli A.: A correction to the paper «An existence theorem for compressible viscous fluids». Ann. Mat. Pura Appl. 132, 399–400 (1982)

    Article  MathSciNet  Google Scholar 

  38. Xin Z.: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  MathSciNet  Google Scholar 

  39. Xu J., Kawashima S.: Frequency-localization Duhamel principle and its application to the optimal decay of dissipative systems in low dimensions. J. Differ. Equ. 261, 2670–2701 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Xu J., Kawashima S.: The optimal decay estimates on the framework of Besov spaces for generally dissipative systems. Arch. Rational Mech. Anal. 218, 275–315 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. Zeng Y.: L 1 asymptotic behavior of compressible isentropic viscous 1-D flow. Commun. Pure Appl. Math. 47, 1053–1082 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The author (J. Xu) is partially supported by the National Natural Science Foundation of China (11471158, 11871274) and the Fundamental Research Funds for the Central Universities (NE2015005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Xu.

Additional information

Communicated by C. De Lellis

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author would like to thank Professor A. Matsumura for introducing him to the decay problem for partially parabolic equations when he visited Osaka University. Also, he is grateful to Professor R. Danchin for addressing the conjecture on the regularity of low frequencies when visiting the LAMA in UPEC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J. A Low-Frequency Assumption for Optimal Time-Decay Estimates to the Compressible Navier–Stokes Equations. Commun. Math. Phys. 371, 525–560 (2019). https://doi.org/10.1007/s00220-019-03415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03415-6

Navigation