Skip to main content
Log in

Regular variations in organic matrix composition of small yellow croaker (Pseudociaena polyactis) otoliths: an in situ Raman microspectroscopy and mapping study

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The stonelike otoliths from the ears of fish consist of calcium carbonate crystallites embedded in an organic matrix framework. The organic matrix has long been known to play a pivotal role in the biomineralization of otoliths, and different methods have been used to conduct investigations on it. A new sensitive method for the in situ study of the regular variations in the organic matrix composition of serial small yellow croaker otoliths by Raman microspectroscopy and mapping is described. The major collagen bands were always observed around 1,272 cm-1 (amide III) and 1600–1690 cm-1 (amide I), and 1443 and 2800–3100 cm-1 (bending and stretching modes of CH groups, respectively). Aromatic amino acids, such as phenylalanine and tyrosine, were identified at 1,003 cm-1 and at 830 and 853 cm-1. Tryptophan was assigned at 1,555 cm-1, and it was firstly found in otoliths. A regular calcification process in otoliths was observed in Raman spectral mapping results. Corresponding changes were clearly seen in the concentrations of the organic matrix and aragonite (CaCO3) in otoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Christian S, Manfred B, Elisabeth BN, Jürgen B, Heinz S, Christian R, Teresa N (2003) Science 302:282–286

    Article  Google Scholar 

  2. Tohse H, Mugiya Y (2002) J Fish Biol 61:199–206

    Article  Google Scholar 

  3. Borelli G, Guibbolini ME, Mayer-Gostan N, Priouzeau F, De Pontual H, Allemand D, Puverel S, Tambutte E, Payan P (2003) J Exp Biol 206:2685–2692

    Article  CAS  Google Scholar 

  4. Gauldie RW, Sharma SK, Gauldie EVW (1997) Comp Biochem Phys A 118:753–757

    Article  Google Scholar 

  5. Sidgartga P (2005) Nucl Instrum Methods B 229:367–374

    Article  Google Scholar 

  6. Huessy K, Mosegaard H, Jessen F (2004) Can J Fish Aquat Sci 61:1012–1020

    Article  CAS  Google Scholar 

  7. Morales-Nin B (1986) S Afr J Mar Sci 4:3–10

    Google Scholar 

  8. Weiner S (1984) Am Zool 24:945–951

    CAS  Google Scholar 

  9. Murayama E, Takagi Y, Ohira T, Davis JG, Greene MI, Nagasawa H (2002) Eur J Biochem 269:688–696

    Article  CAS  Google Scholar 

  10. Aragae G, Conceicaeo LEC, Dinis HJFMT (2004) Aquaculture 242:589–605

    Article  Google Scholar 

  11. Hedegaard C, Bardeau JF, Chateigner D (2006) J Mollus Stud 72:157–162

    Article  Google Scholar 

  12. Penel G, Delfosse C, Descamps M, Leroy G (2005) Bone 36:893–901

    Article  CAS  Google Scholar 

  13. Kazanci M, Roschge P, Paschalis EP, Klaushofer K, Fratzl P (2006) J Struct Biol 156:489–496

    Article  CAS  Google Scholar 

  14. Kaczorowska B, Hacura A, Kupka T, Wrzalik R, Talik E, Pastermy G, Matuszewska A (2003) Anal Bioanal Chem 377:1032–1037

    Article  CAS  Google Scholar 

  15. Edwards HGM, Villar SEJ, Hassan NFN, Arya N, O’Connor S, Charlton DM (2005) Anal Bioanal Chem 383:713–720

    Article  CAS  Google Scholar 

  16. Hope GA, Woods R, Munce CG (2001) Miner Eng 14:1565–1577

    Article  CAS  Google Scholar 

  17. Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Nature 416:73–76

    Article  CAS  Google Scholar 

  18. Kim S, Jung S, Zhang CI (1997) Fish Oceanogr 6:1–9

    Article  Google Scholar 

  19. Stevenson DK, Campana SE (1992) Can Spec Publ Fish Aquat Sci 117:41–47

    Google Scholar 

  20. Borelli G, Mayer-Gostan N, Pontual HD, Boeuf G, Payan P (2001) Calcif Tissue Int 69:356–364

    Article  CAS  Google Scholar 

  21. Dauphin Y, Dufour E (2003) Comp Biochem Phys A 134:551–561

    Article  CAS  Google Scholar 

  22. Xie Y, Zhang DM, Jarori GK, Davisson VJ, Ben-Amotz D (2004) Anal Biochem 332:116–121

    Article  CAS  Google Scholar 

  23. Iconomidou VA, Geprgaka ME, Chryssikos GD, Gionis V, Megalofonou P, Hamodrakas SJ (2007) Int J Biol Macromol 41:102–108

    Article  CAS  Google Scholar 

  24. Shih S, Weng YM, Chen S, Huang SL, Huang CH, Chen W (2003) Arch Biochem Biophys 420:79–86

    Article  CAS  Google Scholar 

  25. Medina-Gutiérrez C, Frausto-Reyes C, Quintanar-Stephano JL, Sato-Berrú R (2004) Spectrochim Acta A 60:2269–2274

    Article  Google Scholar 

  26. Combs A, McCamm K, Autrey D, Laane J, Overman SA, Thomas JGJ (2005) J Mol Struct 735–736:271–278

    Article  Google Scholar 

  27. Kaminaka S, Imamra Y, Shingu M, Kitagawa T, Toyoda T (1999) J Virol Methods 77:117–123

    Article  CAS  Google Scholar 

  28. Goodfriend GA, Weidman CR (2001) Geochim Cosmochim Ac 65:1921–1931

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by project grants from the Chinese National Program on Key Basic Research Project (no. 2006CB400601), National Natural Science Foundation of China (no. 40776047), the Science and Technology Committee of Shanghai Municipal (no. 07DJ14003-04) and Excellent Young Teacher in Support Candidates of Shanghai Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenfen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Cai, W., Sun, Z. et al. Regular variations in organic matrix composition of small yellow croaker (Pseudociaena polyactis) otoliths: an in situ Raman microspectroscopy and mapping study. Anal Bioanal Chem 390, 777–782 (2008). https://doi.org/10.1007/s00216-007-1695-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1695-z

Keywords

Navigation