Skip to main content
Log in

Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We investigate connections between Lipschitz geometry of real algebraic varieties and properties of their arc spaces. For this purpose we develop motivic integration in the real algebraic set-up. We construct a motivic measure on the space of real analytic arcs. We use this measure to define a real motivic integral which admits a change of variables formula not only for the birational but also for generically one-to-one Nash maps. As a consequence we obtain an inverse mapping theorem which holds for continuous rational maps and, more generally, for generically arc-analytic maps. These maps appeared recently in the classification of singularities of real analytic function germs. Finally, as an application, we characterize in terms of the motivic measure, germs of arc-analytic homeomorphism between real algebraic varieties which are bi-Lipschitz for the inner metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For ease of reading, in the introduction we avoid varieties admitting points which have a structure of smooth submanifold of smaller dimension as in the handle of the Whitney umbrella \(\{x^2=zy^2\}\subset \mathbb R^3\).

  2. Actually, noticing that \(f_1=\cdots =f_s=0\Leftrightarrow f_1^2+\cdots +f_s^2=0\), we may always describe a real algebraic set as the zero-set of only one polynomial.

  3. A subset of \(\mathbb P_\mathbb R^N\) is semialgebraic if it is for \(\mathbb P_\mathbb R^N\) seen as an algebraic subset of some \(\mathbb R^M\), or, equivalently, if the intersection of the set with each canonical affine chart is semialgebraic.

  4. i.e. for every \(x\in B\) there is \(U\subset B\) an \(\mathcal {AS}\)-open subset containing x such that \(p^{-1}(U)\simeq U\times F\).

  5. i.e. \(\mathcal F^{m+1}\mathcal M\subset \mathcal F^m\mathcal M\) and \(\mathcal F^m\mathcal M\cdot \mathcal F^n\mathcal M\subset \mathcal F^{m+n}\mathcal M\). The last condition induces a ring structure on the group \(\widehat{\mathcal M}\).

References

  1. Batyrev, V.V.: Stringy Hodge numbers of varieties with Gorenstein canonical singularities. In: Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), pp. 1–32. World Scientific Publishing, River Edge (1998)

  2. Bierstone, E., Milman, P.D.: Arc-analytic functions. Invent. Math. 101(2), 411–424 (1990). https://doi.org/10.1007/BF01231509

    Article  MathSciNet  MATH  Google Scholar 

  3. Bierstone, E., Milman, P.D.: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128(2), 207–302 (1997). https://doi.org/10.1007/s002220050141

    Article  MathSciNet  MATH  Google Scholar 

  4. Birbrair, L., Neumann, W.D., Pichon, A.: The thick-thin decomposition and the bilipschitz classification of normal surface singularities. Acta Math. 212(2), 199–256 (2014). https://doi.org/10.1007/s11511-014-0111-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Bochnak, J.: Analytic functions in Banach spaces. Stud. Math. 35, 273–292 (1970). https://doi.org/10.4064/sm-35-3-273-292

    Article  MathSciNet  MATH  Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.F.: Real algebraic geometry. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36. Springer, Berlin (1998). https://doi.org/10.1007/978-3-662-03718-8. Translated from the 1987 French original, Revised by the authors

  7. Borisov, L.A.: The class of the affine line is a zero divisor in the Grothendieck ring. J. Algebraic Geom. 27(2), 203–209 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Campesato, J.B.: An inverse mapping theorem for blow-Nash maps on singular spaces. Nagoya Math. J. 223(1), 162–194 (2016). https://doi.org/10.1017/nmj.2016.29

    Article  MathSciNet  MATH  Google Scholar 

  9. Campesato, J.B.: On a motivic invariant of the arc-analytic equivalence. Ann. Inst. Fourier (Grenoble) 67(1), 143–196 (2017). http://aif.cedram.org/item?id=AIF_2017__67_1_143_0

  10. Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232 (1999). https://doi.org/10.1007/s002220050284

    Article  MathSciNet  MATH  Google Scholar 

  11. Denef, J., Loeser, F.: Motivic integration, quotient singularities and the McKay correspondence. Compos. Math. 131(3), 267–290 (2002). https://doi.org/10.1023/A:1015565912485

    Article  MathSciNet  MATH  Google Scholar 

  12. Fichou, G.: Motivic invariants of arc-symmetric sets and blow-Nash equivalence. Compos. Math. 141(3), 655–688 (2005). https://doi.org/10.1112/S0010437X05001168

    Article  MathSciNet  MATH  Google Scholar 

  13. Fichou, G.: On Grothendieck rings and algebraically constructible functions. Math. Ann. 369(1–2), 761–795 (2017). https://doi.org/10.1007/s00208-017-1564-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Fukui, T., Kurdyka, K., Păunescu, L.: An inverse mapping theorem for arc-analytic homeomorphisms. In: Geometric Singularity Theory, Banach Center Publ., vol. 65, pp. 49–56. Polish Acad. Sci. Inst. Math., Warsaw (2004). https://doi.org/10.4064/bc65-0-3

  15. Greenberg, M.J.: Rational points in Henselian discrete valuation rings. Inst. Hautes Études Sci. Publ. Math. (31), 59–64 (1966). http://www.numdam.org/item?id=PMIHES_1966__31__59_0

  16. Halupczok, I., Yin, Y.: Lipschitz stratifications in power-bounded o-minimal fields. J. Eur. Math. Soc. (JEMS) 20(11), 2717–2767 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I. Ann. Math. (2) 79, 109–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. II. Ann. Math. (2) 79, 205–326 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Koike, S., Parusiński, A.: Motivic-type invariants of blow-analytic equivalence. Ann. Inst. Fourier (Grenoble) 53(7), 2061–2104 (2003). http://aif.cedram.org/item?id=AIF_2003__53_7_2061_0

  20. Kollár, J., Kucharz, W., Kurdyka, K.: Curve-rational functions. Math. Ann. 370(1–2), 39–69 (2018). https://doi.org/10.1007/s00208-016-1513-z

    Article  MathSciNet  MATH  Google Scholar 

  21. Kollár, J., Nowak, K.: Continuous rational functions on real and \(p\)-adic varieties. Math. Z. 279(1–2), 85–97 (2015). https://doi.org/10.1007/s00209-014-1358-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Kucharz, W.: Rational maps in real algebraic geometry. Adv. Geom. 9(4), 517–539 (2009). https://doi.org/10.1515/ADVGEOM.2009.024

    Article  MathSciNet  MATH  Google Scholar 

  23. Kurdyka, K.: Ensembles semi-algébriques symétriques par arcs. Math. Ann. 282(3), 445–462 (1988). https://doi.org/10.1007/BF01460044

    Article  MathSciNet  MATH  Google Scholar 

  24. Kurdyka, K.: On a subanalytic stratification satisfying a Whitney property with exponent \(1\). In: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math., vol. 1524, pp. 316–322. Springer, Berlin (1992). https://doi.org/10.1007/BFb0084630

  25. Kurdyka, K., Orro, P.: Distance géodésique sur un sous-analytique. Rev. Mat. Univ. Complut. Madrid 10(Special Issue, suppl.), 173–182 (1997) (Real algebraic and analytic geometry (Segovia, 1995))

  26. Kurdyka, K., Parusiński, A.: Quasi-convex decomposition in o-minimal structures. Application to the gradient conjecture. In: Singularity Theory and its Applications, Advanced Studies in Pure Mathematics, vol. 43, pp. 137–177. Math. Soc. Japan, Tokyo (2006)

  27. Kurdyka, K., Parusiński, A.: Arc-symmetric sets and arc-analytic mappings. In: Arc Spaces and Additive Invariants in Real Algebraic and Analytic Geometry. Panor. Synthèses, vol. 24, pp. 33–67. Soc. Math. France, Paris (2007)

  28. Kurdyka, K., Păunescu, L.: Arc-analyticity is an open property. In: Singularités Franco-Japonaises, Sémin. Congr., vol. 10, pp. 155–162. Soc. Math. France, Paris (2005)

  29. Looijenga, E.: Motivic measures. Astérisque (276), 267–297 (2002). Séminaire Bourbaki, vol. 1999/2000

  30. Malgrange, B.: Ideals of differentiable functions. In: Tata Institute of Fundamental Research Studies in Mathematics, No. 3. Tata Institute of Fundamental Research, Bombay; Oxford University Press, London (1967)

  31. Martin, N.: The class of the affine line is a zero divisor in the Grothendieck ring: an improvement. C. R. Math. Acad. Sci. Paris 354(9), 936–939 (2016). https://doi.org/10.1016/j.crma.2016.05.016

    Article  MathSciNet  MATH  Google Scholar 

  32. McCrory, C., Parusiński, A.: Virtual Betti numbers of real algebraic varieties. C. R. Math. Acad. Sci. Paris 336(9), 763–768 (2003). https://doi.org/10.1016/S1631-073X(03)00168-7

    Article  MathSciNet  MATH  Google Scholar 

  33. McCrory, C., Parusiński, A.: The weight filtration for real algebraic varieties. In: Topology of Stratified Spaces, Math. Sci. Res. Inst. Publ., vol. 58, pp. 121–160. Cambridge University Press, Cambridge (2011)

  34. Mostowski, T.: Lipschitz equisingularity. Diss. Math. (Rozpr. Mat.) 243, 46 (1985)

    MathSciNet  MATH  Google Scholar 

  35. Motzkin, T.S.: The real solution set of a system of algebraic inequalities is the projection of a hypersurface in one more dimension. In: Inequalities, II (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), pp. 251–254. Academic Press, New York (1970)

  36. Nash Jr., J.F.: Arc structure of singularities. Duke Math. J. 81(1), 31–38 (1996) (1995). https://doi.org/10.1215/S0012-7094-95-08103-4. (A celebration of John F. Nash, Jr)

  37. Parusiński, A.: Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble) 38(4), 189–213 (1988). http://www.numdam.org/item?id=AIF_1988__38_4_189_0

  38. Parusiński, A.: Lipschitz stratification. In: Global Analysis in Modern Mathematics (Orono, ME, 1991; Waltham, MA, 1992), pp. 73–89. Publish or Perish, Houston (1993)

  39. Parusiński, A.: Lipschitz stratification of subanalytic sets. Ann. Sci. École Norm. Sup. (4) 27(6), 661–696 (1994). http://www.numdam.org/item?id=ASENS_1994_4_27_6_661_0

  40. Parusiński, A.: Subanalytic functions. Trans. Am. Math. Soc. 344(2), 583–595 (1994). https://doi.org/10.2307/2154496

    Article  MathSciNet  MATH  Google Scholar 

  41. Parusiński, A.: Topology of injective endomorphisms of real algebraic sets. Math. Ann. 328(1–2), 353–372 (2004). https://doi.org/10.1007/s00208-003-0486-x

    Article  MathSciNet  MATH  Google Scholar 

  42. Parusiński, A., Păunescu, L.: Arc-wise analytic stratification, Whitney fibering conjecture and Zariski equisingularity. Adv. Math. 309, 254–305 (2017). https://doi.org/10.1016/j.aim.2017.01.016

    Article  MathSciNet  MATH  Google Scholar 

  43. Pawłucki, W.: Lipschitz cell decomposition in o-minimal structures. I. Ill. J. Math. 52(3), 1045–1063 (2008). http://projecteuclid.org/euclid.ijm/1254403731

  44. Poonen, B.: The Grothendieck ring of varieties is not a domain. Math. Res. Lett. 9(4), 493–497 (2002). https://doi.org/10.4310/MRL.2002.v9.n4.a8

    Article  MathSciNet  MATH  Google Scholar 

  45. Quarez, R.: Espace des germes d’arcs réels et série de Poincaré d’un ensemble semi-algébrique. Ann. Inst. Fourier (Grenoble) 51(1), 43–68 (2001). http://aif.cedram.org/item?id=AIF_2001__51_1_43_0

  46. Siciak, J.: A characterization of analytic functions of \(n\) real variables. Stud. Math. 35, 293–297 (1970). https://doi.org/10.4064/sm-35-3-293-297

    Article  MathSciNet  MATH  Google Scholar 

  47. Valette, G.: Lipschitz triangulations. Ill. J. Math. 49(3), 953–979 (2005). http://projecteuclid.org/euclid.ijm/1258138230

  48. Valette, G.: On metric types that are definable in an o-minimal structure. J. Symb. Log. 73(2), 439–447 (2008). https://doi.org/10.2178/jsl/1208359053

    Article  MathSciNet  MATH  Google Scholar 

  49. Zariski, O.: Exceptional singularities of an algebroid surface and their reduction. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 43, 135–146 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Parusiński.

Additional information

Communicated by Jean-Yves Welschinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was supported by JSPS KAKENHI Grant Number JP26287011.

The two last authors were partially supported by ANR project LISA (ANR-17-CE40-0023-03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campesato, JB., Fukui, T., Kurdyka, K. et al. Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets. Math. Ann. 374, 211–251 (2019). https://doi.org/10.1007/s00208-019-01805-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01805-8

Mathematics Subject Classification

Navigation