Skip to main content
Log in

Tibiofemoral rotational alignment affects flexion angles in navigated posterior-stabilized total knee arthroplasty

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To investigate the tibiofemoral rotational profiles during navigated posterior-stabilized (PS) total knee arthroplasty (TKA) and investigate the effect on post-operative maximum flexion angles.

Methods

Twenty-five subjects, treated with navigated PS TKA, were enrolled, and the effect of posterior cruciate ligament (PCL) resection and component implantation on tibiofemoral rotational kinematics was statistically evaluated. Then, the effect of rotational alignment changes on the post-operative maximum angles was retrospectively examined in 96 subjects using the multiple regression analysis.

Results

Tibial internal rotation was significantly increased in full extension (p < 0.01 and <0.001, respectively) and at 60° and 90° flexion (p < 0.05) after PCL resection, which further increased after implantation, compared with that before resection. The amount of tibial internal rotation from 90° flexion to maximum flexion was significantly decreased after PCL resection and implantation, compared with that before resection (p < 0.05). The internal changes in the rotational alignment were independent factors for the minimal improvement in the post-operative maximum flexion angles (R 2 = 0.078, p = 0.0067).

Conclusion

PCL resection changed the tibial rotational alignment and decreased the amount of tibial internal rotation. The implantation of PS components further increased the internal rotational alignment and could not compensate for the tibiofemoral rotation. Finally, the internal changes in rotational alignment affected the improvement of the maximum flexion angles, suggesting that rotational alignment is an important factor for improving post-operative maximum flexion angles.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176

    Article  Google Scholar 

  2. Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219

    Article  Google Scholar 

  3. Arnout N, Vanlommel L, Vanlommel J, Luyckx JP, Labey L, Innocenti B, Victor J, Bellemans J (2015) Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc 23(11):3343–3353

    Article  CAS  PubMed  Google Scholar 

  4. Athwal KK, Daou HE, Kittl C, Davies AJ, Deehan DJ, Amis AA (2016) The superficial medial collateral ligament is the primary medial restraint to knee laxity after cruciate-retaining or posterior-stabilised total knee arthroplasty: effects of implant type and partial release. Knee Surg Sports Traumatol Arthrosc 24(8):2646–2655

    Article  PubMed  Google Scholar 

  5. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55

    Article  Google Scholar 

  6. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  Google Scholar 

  7. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    Article  Google Scholar 

  8. Eckhoff DG, Johnston RJ, Stamm ER, Kilcoyne RF, Wiedel JD (1994) Version of the osteoarthritic knee. J Arthroplasty 9(1):73–79

    Article  CAS  PubMed  Google Scholar 

  9. Fujimoto E, Sasashige Y, Masuda Y, Hisatome T, Eguchi A, Masuda T, Sawa M, Nagata Y (2013) Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(12):2704–2712

    Article  PubMed  Google Scholar 

  10. Ghosh KM, Hunt N, Blain A, Athwal KK, Longstaff L, Amis AA, Rushton S, Deehan DJ (2015) Isolated popliteus tendon injury does not lead to abnormal laxity in posterior-stabilised total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23(6):1763–1769

    Article  CAS  PubMed  Google Scholar 

  11. Hernandez-Vaquero D, Noriega-Fernandez A, Fernandez-Carreira JM, Fernandez-Simon JM, Llorens de los Rios J (2014) Computer-assisted surgery improves rotational positioning of the femoral component but not the tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):3127–3134

    Article  PubMed  Google Scholar 

  12. Hino K, Kutsuna T, Oonishi Y, Watamori K, Kiyomatsu H, Iseki Y, Watanabe S, Ishimaru Y, Miura H (2016) Assessment of the midflexion rotational laxity in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-016-4175-1

    PubMed  Google Scholar 

  13. Hino K, Oonishi Y, Kutsuna T, Watamori K, Iseki Y, Kiyomatsu H, Watanabe S, Miura H (2016) Preoperative varus-valgus kinematic pattern throughout flexion persists more strongly after cruciate-retaining than after posterior-stabilized total knee arthroplasty. Knee 23(4):637–641

    Article  PubMed  Google Scholar 

  14. Incavo SJ, Wild JJ, Coughlin KM, Beynnon BD (2007) Early revision for component malrotation in total knee arthroplasty. Clin Orthop Relat Res 458:131–136

    PubMed  Google Scholar 

  15. Ishida K, Matsumoto T, Tsumura N, Chinzei N, Kitagawa A, Kubo S, Chin T, Iguchi T, Akisue T, Nishida K, Kurosaka M, Kuroda R (2012) In vivo comparisons of patellofemoral kinematics before and after ADVANCE Medial-Pivot total knee arthroplasty. Int Orthop 36(10):2073–2077

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ishida K, Shibanuma N, Matsumoto T, Sasaki H, Takayama K, Hiroshima Y, Kuroda R, Kurosaka M (2016) Navigation-based tibial rotation at 90 degrees of flexion is associated with better range of motion in navigated total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24(8):2447–2452

    Article  PubMed  Google Scholar 

  17. Ishida K, Shibanuma N, Matsumoto T, Sasaki H, Takayama K, Matsuzaki T, Tei K, Kuroda R, Kurosaka M (2016) Navigation-based femorotibial rotation pattern correlated with flexion angle after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24(1):89–95

    Article  PubMed  Google Scholar 

  18. Ishida K, Shibanuma N, Matsumoto T, Sasaki H, Takayama K, Toda A, Kuroda R, Kurosaka M (2015) Factors affecting intraoperative kinematic patterns and flexion angles in navigated total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23(6):1741–1747

    Article  PubMed  Google Scholar 

  19. Kawahara S, Matsuda S, Okazaki K, Tashiro Y, Mitsuyasu H, Nakahara H, Iwamoto Y (2012) Relationship between the tibial anteroposterior axis and the surgical epicondylar axis in varus and valgus knees. Knee Surg Sports Traumatol Arthrosc 20(10):2077–2081

    Article  PubMed  Google Scholar 

  20. Konigsberg B, Hess R, Hartman C, Smith L, Garvin KL (2014) Inter- and intraobserver reliability of two-dimensional CT scan for total knee arthroplasty component malrotation. Clin Orthop Relat Res 472(1):212–217

    Article  PubMed  Google Scholar 

  21. Lai YS, Chen WC, Huang CH, Cheng CK, Chan KK, Chang TK (2015) The effect of graft strength on knee laxity and graft in situ forces after posterior cruciate ligament reconstruction. PLoS ONE 10(5):e0127293

    Article  PubMed  PubMed Central  Google Scholar 

  22. Langlois J, Charles-Nelson A, Katsahian S, Beldame J, Lefebvre B, Bercovy M (2015) Predictors of flexion using the rotating concave-convex total knee arthroplasty: preoperative range of motion is not the only determinant. Knee Surg Sports Traumatol Arthrosc 23(6):1734–1740

    Article  PubMed  Google Scholar 

  23. Li G, Gill TJ, DeFrate LE, Zayontz S, Glatt V, Zarins B (2002) Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads–an in vitro experimental study. J Orthop Res 20(4):887–892

    Article  PubMed  Google Scholar 

  24. Li G, Papannagari R, Li M, Bingham J, Nha KW, Allred D, Gill T (2008) Effect of posterior cruciate ligament deficiency on in vivo translation and rotation of the knee during weightbearing flexion. Am J Sports Med 36(3):474–479

    Article  PubMed  Google Scholar 

  25. Liu MF, Chou PH, Liaw LJ, Su FC (2010) Lower-limb adaptation during squatting after isolated posterior cruciate ligament injuries. Clin Biomech (Bristol, Avon) 25(9):909–913

    Article  Google Scholar 

  26. Lutzner J, Kirschner S, Gunther KP, Harman MK (2012) Patients with no functional improvement after total knee arthroplasty show different kinematics. Int Orthop 36(9):1841–1847

    Article  PubMed  PubMed Central  Google Scholar 

  27. Matsuda S, Kawahara S, Okazaki K, Tashiro Y, Iwamoto Y (2013) Postoperative alignment and ROM affect patient satisfaction after TKA. Clin Orthop Relat Res 471(1):127–133

    Article  PubMed  Google Scholar 

  28. Matsuda S, Miura H, Nagamine R, Urabe K, Hirata G, Iwamoto Y (2001) Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of Miller-Galante I knees. Am J Knee Surg 14(3):152–156

    CAS  PubMed  Google Scholar 

  29. Meijer MF, Reininga IH, Boerboom AL, Bulstra SK, Stevens M (2014) Does imageless computer-assisted TKA lead to improved rotational alignment or fewer outliers? A systematic review. Clin Orthop Relat Res 472(10):3124–3133

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miyazaki Y, Nakamura T, Kogame K, Saito M, Yamamoto K, Suguro T (2011) Analysis of the kinematics of total knee prostheses with a medial pivot design. J Arthroplasty 26(7):1038–1044

    Article  PubMed  Google Scholar 

  31. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92(9):1238–1244

    Article  CAS  PubMed  Google Scholar 

  32. Nishio Y, Onodera T, Kasahara Y, Takahashi D, Iwasaki N, Majima T (2014) Intraoperative medial pivot affects deep knee flexion angle and patient-reported outcomes after total knee arthroplasty. J Arthroplasty 29(4):702–706

    Article  PubMed  Google Scholar 

  33. Orita N, Deie M, Shimada N, Iwaki D, Asaeda M, Hirata K, Ochi M (2015) Posterior tibial displacement in the PCL-deficient knee is reduced compared to the normal knee during gait. Knee Surg Sports Traumatol Arthrosc 23(11):3251–3258

    Article  PubMed  Google Scholar 

  34. Roh YW, Jang J, Choi WC, Lee JK, Chun SH, Lee S, Seong SC, Lee MC (2013) Preservation of the posterior cruciate ligament is not helpful in highly conforming mobile-bearing total knee arthroplasty: a randomized controlled study. Knee Surg Sports Traumatol Arthrosc 21(12):2850–2859

    Article  PubMed  Google Scholar 

  35. Schmidt R, Komistek RD, Blaha JD, Penenberg BL, Maloney WJ (2003) Fluoroscopic analyses of cruciate-retaining and medial pivot knee implants. Clin Orthop Relat Res 410:139–147

    Article  Google Scholar 

  36. Seon JK, Park JK, Shin YJ, Seo HY, Lee KB, Song EK (2011) Comparisons of kinematics and range of motion in high-flexion total knee arthroplasty: cruciate retaining vs. substituting designs. Knee Surg Sports Traumatol Arthrosc 19(12):2016–2022

    Article  PubMed  Google Scholar 

  37. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13

    Article  Google Scholar 

  38. Tei K, Ishida K, Matsumoto T, Kubo S, Sasaki H, Shibanuma N, Akisue T, Nishida K, Kurosaka M, Kuroda R (2012) Novel image-matching software for postoperative evaluation after TKA. Orthopedics 35(12):e1711–e1715

    Article  PubMed  Google Scholar 

  39. Wada K, Mikami H, Hamada D, Yonezu H, Oba K, Sairyo K (2016) Measurement of rotational and coronal alignment in total knee arthroplasty using a navigation system is reproducible. Arch Orthop Trauma Surg 136(2):271–276

    Article  PubMed  Google Scholar 

  40. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG (1994) Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res 299:31–43

    Google Scholar 

  41. Watanabe S, Sato T, Omori G, Koga Y, Endo N (2014) Change in tibiofemoral rotational alignment during total knee arthroplasty. J Orthop Sci 19(4):571–578

    Article  PubMed  Google Scholar 

  42. Wunschel M, Leasure JM, Dalheimer P, Kraft N, Wulker N, Muller O (2013) Differences in knee joint kinematics and forces after posterior cruciate retaining and stabilized total knee arthroplasty. Knee 20(6):416–421

    Article  PubMed  Google Scholar 

  43. Yang JH, Dahuja A, Kim JK, Yun SH, Yoon JR (2016) Alignment in knee flexion position during navigation-assisted total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24(8):2422–2429

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Ishida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was not funded by any company.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, K., Shibanuma, N., Matsumoto, T. et al. Tibiofemoral rotational alignment affects flexion angles in navigated posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 26, 1532–1539 (2018). https://doi.org/10.1007/s00167-017-4557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4557-z

Keywords

Navigation