Skip to main content
Log in

Isolation of phenylpropanoid sucrose esters from the roots of Persicaria orientalis and their potential as inhibitors of melanogenesis

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Cosmetically, hyperpigmentation is an important issue and the most prominent target for inhibiting hyperpigmentation is, tyrosinase, the rate-limiting enzyme in melanogenesis. Therefore, in this research, we have screened several medicinal plants collected from Bangladesh for their anti-tyrosinase activity and found that roots of Persicaria orientalis have potent inhibitory activity. Nine compounds, including five phenylpropanoid sucrose esters (15), were isolated from the EtOH extract of P. orientalis roots. The chemical structures were determined based on spectroscopic methods. All the tested compounds (15), significantly reduced extracellular melanin formation in B16 melanoma cells and inhibited tyrosinase monophenolase and diphenolase activity in a dose dependent manner. Compound 4 was twice as effective as kojic acid, when l-DOPA was used as the substrate. Compound 1 and 4 showed better inhibitory activity (>59%) on melanin synthesis at a treated concentration of 50 µM compare with arbutin (730 µM). At 6.25 µM concentration, compounds 2 and 5, inhibited extracellular melanin production by 53.1% and 40.2%, respectively. Structure-activity-relationship suggested that both the feruloyl (C-6′) and acetyl (C-2′/ C-4′) groups in sucrose moiety is essential for cytotoxicity. Our finding indicated the roots of P. orientalis is a potential source of natural compounds that could be used in dermatological and cosmetological research. To the best of our knowledge, this is the first study to report the potential melanogenesis inhibitory activity of phenylpropanoid sucrose esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ando H, Kondoh H, Ichihashi M, Hearing VJ (2007) Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J Investig Dermatol 127:751–761

    Article  CAS  PubMed  Google Scholar 

  • An BJ, Kwak JH, Park JM, Lee JY, Park TS, Lee JT, Son JH, Jo C, Byun MW (2005) Inhibition of enzyme activities and the anti-wrinkle effect of polyphenol isolated from the persimmon leaf (Diospyros kaki folium) on human skin. J Dermatol Surg 31:848–854

    Article  CAS  Google Scholar 

  • Arung ET, Matsubara E, Kusuma WI, Sukaton E, Shimizu K, Kondo R (2011) Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Fitoterapia 82:198–202

    Article  CAS  PubMed  Google Scholar 

  • Baek SH, Nam IJ, Kwak HS, Kim KC, Lee SH (2015) Cellular anti-melanogenic effects of a Euryale ferox seed extract ethyl acetate fraction via the lysosomal degradation machinery. Int J Mol Sci 16:9217–9235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batubara I, Darusman LK, Mitsunaga T, Rahminiwati M, Djauhari E (2010) Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J Biol Sci 2:138–144

    Google Scholar 

  • Batubara I, Darusman LK, Mitsunaga T, Aoki H, Rahminiwati M, Djauhari E, Yamauchi K (2011) Flavonoid from Intsia palembanica as skin whitening agent. J Biol Sci 8:475–480

    Google Scholar 

  • Briganti S, Camera E, Picardo M (2003) Chemical and instrumental approaches to hyperpigmentation. Pigment Cell Res 16:101–110

    Article  PubMed  Google Scholar 

  • Brown LL, Larson SR, Sneden AT (1998) Vanicosides C-F, new phenylpropanoid glycosides from Polygonum pensylvanicum. J Nat Prod 61:762–766

    Article  CAS  PubMed  Google Scholar 

  • Chang TS (2009) An updated review of tyrosinase inhibitors. Intern J Mol Sci 10:2440–2475

    Article  CAS  Google Scholar 

  • Chen WC, Tseng TS, Hsiao NW, Lin YL, Wen ZH, Tsai CC, Lee YC, Lin HH, Tsai KC (2015) Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep 5:7995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JG, Cha BJ, Seo WD, Jeong RH, Shrestha S, Kim JY, Kang HC, Baek NI (2015) Feruloyl sucrose esters from Oryza sativa roots and their tyrosinase inhibition activity. Chem Nat Compd 51:1094–1098

    Article  CAS  Google Scholar 

  • Davis AL, Cai Y, Davies AP, Lewis JR (1996) 1H and 13C NMR Assignments of some green tea polyphenols. Magn Reson Chem 34:887–890

    Article  CAS  Google Scholar 

  • Fukuyama Y, Sato T, Miura I, Asakawa Y, Takemoto T (1983) Hydropiperoside, a novel coumaryl glycoside from the root of Polygonum Hydropiper. Phytochemistry 22:549–552

    Article  CAS  Google Scholar 

  • Fuyuno I (2004) Spotlight turns on cosmetics for Asian skin. Nature 432:938

    Article  CAS  PubMed  Google Scholar 

  • Gafner S, Wolfender J-L, Nianga M, Hostettman K (1997) Phenylpropanoid glycosides from Newbouldia laevis roots. Phytochemistry 44:687–690

    Article  CAS  PubMed  Google Scholar 

  • Guria M, Mitra P, Ghosh T, Gupta S, Basu B, Mitra PK (2013) 3, 4 diHydroxyBenzoic acid Isolated from the leaves of Ageratum conyzoides L. Eur J Biotechnol Biosci 1:25–28

    Google Scholar 

  • Kamatham S, Kumar N, Gudipalli P (2015) Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicol Rep 2:520–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiem PV, Nhiem NX, Cuong NX, Hoa TQ, Huong HT, Huong le M, Minh CV, Kim YH (2008) New phenylpropanoid esters of sucrose from Polygonum hydropiper and their antioxidant activity. Arch Pharm Res 31:1477–1482

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. CMLS 62:1707–1723

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, Solano F, Garcia-Borron JC, Hearing VJ (1994) Tyrosinase related protein 1(TRP1) functions as DHICA oxidase in melanin biosynthesis. EMBO J 13:5818–5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroyanagi M, Fukushima S (1982) Highly oxygenated flavonoids from Polygonum orientale. Chem Pharm Bull 30:1163–1168

    Article  CAS  Google Scholar 

  • Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 7:735

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YJ, He X, Liu LN, Lan YY, Wang AM, Wang YL (2005) Studies on chemical constituents in herb of Polygonum orientale. China J Chin Mater Med 30:444–446

    CAS  Google Scholar 

  • Liao SG, Li YT, Zhang LJ, Wang Z, Chen TX, Huang Y, Li J, Wang AM, Li YJ, Lan YY, Wang YL (2013) UPLCPDA-ESI-MS/MS analysis of compounds extracted by cardiac h9c2 cell from Polygonum orientale. Phytochem Anal 24:25–35

    Article  CAS  PubMed  Google Scholar 

  • Medicinal plants of Bangladesh (2018, June 26) Retrieved from: http://www.mpbd.info/plants/persicaria-orientalis.php

  • Narasimhulu G, Reddy KK, Mohammad J (2014) The genus Polygonum (Polygonaceae): an ethnopaharmacological and phytochemical perspectives - review. Int J Pharm Pharm Sci 6:21–45

    Google Scholar 

  • Nigam V, Patel A, Malvi R, Gupta B, Vikram P, Goyanar G (2013) Antihyperglycaemic activity on flower of Polygonum orientale Linn. using steptozotocin induced diabetic mice model. Int J Res Dev Pharm Life Sci 4:2626–2631

    Google Scholar 

  • Panda P, Appalashetti M, Judeh ZMA (2011) Phenylpropanoid sucrose esters: plant derived natural products as potential leads for new therapeutics. Curr Med Chem 18:3234–3251

    Article  CAS  PubMed  Google Scholar 

  • Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, Bae H (2006) Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 20:921–934

    Article  CAS  PubMed  Google Scholar 

  • Pawelek JM, Korner AM (1982) The biosynthesis of mammalian melanin. Am Sci 70:136–145

    CAS  PubMed  Google Scholar 

  • Philippine Medicinal plants (2018, July 18) Retrieved from: http://www.stuartxchange.org/OrientalPepper.html

  • Salsberg JM, Weinstein M, Shear N, Lee M, Pope E (2016) Impact of Cosmetic Camouflage on the Quality of Life of Children with Skin Disease and Their Families. J Cutan Med Surg 20:211–215

    Article  PubMed  Google Scholar 

  • Seidel V, Bailleul F, Libot F, Tillequin F (1997) A phenylpropanoid glycoside from Ballota nigra. Phytochemistry 44:691–693

    Article  CAS  PubMed  Google Scholar 

  • Shajib MS, Datta BK, Sohrab MH, Rashid MA, Nahar L, Sarker SD (2017) Highly Oxygenated Flavonoids from the Leaves of Nicotiana plumbaginifolia (Solanaceae). Rec Nat Prod 11:568–572

    Article  CAS  Google Scholar 

  • Shimomura H, Sashida Y, Mimaki Y (1986) Bitter phenylpropanoid glycosides from Lilium speciosum var. rubrum. Phytochemistry 25:2897–2899

    Article  CAS  Google Scholar 

  • Shin H, Park Y, Jeon YH, Yan XT, Lee KY (2018) Identification of Polygonum orientale constituents using high-performance liquid chromatography high-resolution tandem mass spectrometry. Biosci Biotechnol Biochem 82:15–21

    Article  CAS  PubMed  Google Scholar 

  • Shoyama Y, Hatano K, Nishioka I, Yamagishi T (1987) Phenolic glycosides from Lilium longiforum. Phytochemistry 26:2965–2968

    Article  CAS  Google Scholar 

  • Takasaki M, Konoshima T, Kuroki S, Tokuda H, Nishino H (2001) Cancer chemopreventive activity of phenylpropanoid esters of sucrose, vanicoside B and lapathoside A from Polygonum lapathifolium. Cancer Lett 200:133–138

    Article  Google Scholar 

  • Tanimoto S, Tominaga H, Okada Y, Nomura M (2006) Synthesis and cosmetic whitening effect of glycosides derived from several phenylpropanoids. Yakugaku Zasshi 126:173–177

    Article  CAS  PubMed  Google Scholar 

  • Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wei Y, Chen X, Jiang X, Ma Z, Xiao J (2009) Determination of taxifolin in Polygonum orientale and study on its antioxidant activity. J Food Compos Anal 22:154–157

    Article  CAS  Google Scholar 

  • Xiang MX, Xu L, Liu Y, Yan YJ, Hu JY, Su HW (2011) In vitro evaluation of the effects of Polygonum orientale L. on proliferation and differentiation of osteoblastic MC3T3-E1 cell. J Med Plants Res 5:231–236

    Google Scholar 

  • Yamauchi K, Mitsunaga T, Batubara I, Isolation (2011) Identification and tyrosinase inhibitory activities of the extractives from Allamanda cathartica. Nat Resour 2:167–172

  • Yamauchi K, Mitsunaga T, Inagaki M, Suzuki T (2014) Synthesized quercetin derivatives stimulate melanogenesis in B16 melanoma cells by influencing the expression of melanin biosynthesis proteins MITF and p38 MAPK. Bioorg Med Chem 22:3331–3340

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi K, Mitsunaga T, Itakura Y, Batubara I (2015) Extracellular melanogenesis inhibitory activity and the structure-activity relationships of uginins from Helminthostachys zuylanica roots. J Fitoter 104:69–74

    Article  CAS  Google Scholar 

  • Yokoyama K, Suzuki H, Yasumoto K, Tomita Y, Shibahara S (1994) Molecular cloning and functional analysis of cDNA coding for human DOPAchrome tautomerase/tyrosinase-related protein-2. Biochim Biophys Acta 1217:317–321

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Huang XX, Yu LH, Liu QB, Li LZ, Sun Q, Song SJ (2014) Tomensides A-D, new antiproliferative phenylpropanoid sucrose esters from Prunus tomentosa leaves. Bioorg & Med Chem Lett 24:2459–2462

    Article  CAS  Google Scholar 

  • Zheng C, Hu C, Ma X, Peng C, Zhang H, Qin L (2012) Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn. Food Chem 132:433–438

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Wang D, Meng J, Shen X (1997) Studies on the lignans of Polygonum orientale. Acta Bot Sin 40:466–469

    Google Scholar 

  • Zhong-hua-ben-cao (1999) State administration of traditional Chinese medicine of People’s Republic of China. Shanghai Science and Technology Publisher, Shanghai, China.

    Google Scholar 

  • Zimmermann ML, Sneden AT (1994) Vanicosides A and B, Protein Kinase C Inhibitors from Polygonum pensylvanicum. J Nat Prod 57:236–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author are grateful to financial support from Japan Student Services Organization (JASSO) and United Graduate School of Agricultural Science, Gifu University. The authors would like to thank Dr. Syed Hadiuzzaman, former Professor Dept. of Botany, University of Dhaka, Bangladesh for the plant identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Mitsunaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masum, M.N., Choodej, S., Yamauchi, K. et al. Isolation of phenylpropanoid sucrose esters from the roots of Persicaria orientalis and their potential as inhibitors of melanogenesis. Med Chem Res 28, 623–632 (2019). https://doi.org/10.1007/s00044-019-02312-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02312-w

Keywords

Navigation