Skip to main content
Log in

Geometric Schur Duality of Classical Type

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

This is a generalization of the classic work of Beilinson, Lusztig and MacPherson. In this paper (and an Appendix) we show that the quantum algebras obtained via a BLM-type stabilization procedure in the setting of partial Flag varieties of type B/C are two (modified) coideal subalgebras of the quantum general linear Lie algebra, \( \overset{.}{\mathbf{U}} \) and \( \overset{.}{\mathbf{U}} \) ʅ . We provide a geometric realization of the Schur-type duality of Bao–Wang between such a coideal algebra and Iwahori–Hecke algebra of type B. The monomial bases and canonical bases of the Schur algebras and the modified coideal algebra \( \overset{.}{\mathbf{U}} \) are constructed.

In an Appendix by three authors, a more subtle 2-step stabilization procedure leading to \( \overset{.}{\mathbf{U}} \) ʅ is developed, and then monomial and canonical bases of \( \overset{.}{\mathbf{U}} \) ʅ are constructed. It is shown that \( \overset{.}{\mathbf{U}} \) ʅ is a subquotient of \( \overset{.}{\mathbf{U}} \) with compatible canonical bases. Moreover, a compatibility between canonical bases for modified coideal algebras and Schur algebras is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Bao, W. Wang, A new approach to Kazhdan–Lusztig theory of type B via quantum symmetric pairs, arXiv:1310.0103v2 (2016).

  2. A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473527.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Beilinson, G. Lusztig, R. McPherson, A geometric setting for the quantum deformation of GL n , Duke Math. J. 61 (1990), 655677.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Billey, Pattern avoidance and rational smoothness of Schubert varieties, Adv. in Math. 139 (1998), 141156.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, Vol. 182, Birkhäuser Boston, Boston, MA, 2000.

  6. B. Deng, J. Du, B. Parshall, J. Wang, Finite Dimensional Algebras and Quantum Groups., Mathematical Surveys and Monographs, Vol. 150, Amer. Math. Soc., Providence, RI, 2008.

  7. J. Du, Kazhdan–Lusztig bases and isomorphism theorems for q-Schur algebras, Contemp. Math. 139 (1992), 121140.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Du, Q. Fu, The integral quantum loop algebra of gl n , arXiv:1404.5679 (2014).

  9. V. Drinfeld, Quantum groups, in: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798820.

  10. M. Ehrig, C. Stroppel, Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality, arXiv:1310.1972 (2013).

  11. Q. Fu, BLM realization for UZ(bgl n ), arXiv:1204.3142 (2012).

  12. Z. Fan, Y. Li, Geometric Schur duality of classical type, II, Trans. Amer. Math. Soc., Series B 2 (2015), 5192.

  13. R. M. Green, Hyperoctahedral Schur algebras, J. Algebra 192 (1997), 418438.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Grojnowski, G. Lusztig, On bases of irreducible representations of quantum GL n , in: Kazhdan–Lusztig theory and Related Topics (Chicago, IL, 1989), Contemp. Math. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 167174.

  15. V. Ginzburg, E. Vasserot, Langlands reciprocity for affine quantum groups of type A n , Internat. Math. Res. Notices 3 (1993), 6785.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Jimbo, A q-analogue of U(gl(N + 1)), Hecke algebra, and the Yang–Baxter equation, Lett. Math. Phys. 11 (1986), 247252.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 456516.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Kolb, Quantum symmetric Kac–Moody pairs, Adv. in Math. 267 (2014), 395469.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165184.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Kazhdan, G. Lusztig, Schubert varieties and Poincarè duality, in: Geometry of the Laplace Operator (Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., Vol. XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185203.

  21. M. Khovanov, A. Lauda, A categorification of quantum 𝔰𝔩(n), Quantum Topology 1 (2010), 192.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Letzter, Coideal subalgebras and quantum symmetric pairs, in: New Directions in Hopf Algebras (Cambridge), MSRI Publ., Vol. 43, Cambridge Univ. Press, 2002, pp. 117166.

  23. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447498.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Lusztig, Introduction to Quantum Groups, Modern Birkhäuser Classics, Birkhäuser, Boston, 2010.

    Book  MATH  Google Scholar 

  25. G. Lusztig, Aperiodicity in quantum affine gln, Asian J. Math. 3 (1999), 147177.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. McGerty, On the geometric realization of the inner product and canonical basis for quantum affine sl n , Alg. and Number Theory 6 (2012), 10971131.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J. 76 (1994), 365416.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Pouchin, A geometric Schur–Weyl duality for quotients of affine Hecke algebras, J. Algebra 321 (2009), 230247.

    Article  MathSciNet  MATH  Google Scholar 

  29. O. Schiffmann, E. Vasserot, Geometric construction of the global base of the quantum modified algebra of \( {\widehat{\mathfrak{gl}}}_{\mathfrak{n}} \), Transform. Groups 5 (2000), 351360.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Varagnolo, E. Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), 267297.

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Wang, Lagrangian construction of the (gl n ; gl m )-duality, Commun. in Contemp. Math. 3 (2001), 201214.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, H., Kujawa, J., Li, Y. et al. Geometric Schur Duality of Classical Type. Transformation Groups 23, 329–389 (2018). https://doi.org/10.1007/s00031-017-9447-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9447-4

Navigation