Skip to main content
Log in

COMPARISON OF CANONICAL BASES FOR SCHUR AND UNIVERSAL ENVELOPING ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We show that the canonical bases in and the Schur algebra are compatible; in fact we extend this result to p-canonical bases. This follows immediately from a fullness result for a functor categorifying this map. In order to prove this result, we also explain the connections between categorifications of the Schur algebra which arise from parity sheaves on partial ag varieties, singular Soergel bimodules and Khovanov and Lauda's “flag category," which are of some independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, in: Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque, Vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.

  2. A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473–527.

  3. A. Beliakova, A. D. Lauda, Categorified quantum is an inverse limit of flag 2-categories, Transform. Groups 19 (2014), no. 1, 1–26.

  4. A. A. Beilinson, G. Lusztig, R. MacPherson, A geometric setting for the quantum deformation of GL n , Duke Math. J. 61 (1990), no. 2, 655–677.

  5. J. Brundan, On the definition of Kac–Moody 2-category, arxiv1501.00350 (2015).

  6. S. Cautis, A. D. Lauda, Implicit structure in 2-representations of quantum groups, Selecta Math. (N.S.) 21 (2015), no. 1, 201–244.

  7. B. Elias, M. Khovanov, Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. (2010), Art. ID 978635, 58.

  8. D. Juteau, C. Mautner, G. Williamson, Parity sheaves, J. Amer. Math. Soc. 27 (2014), no. 4, 1169–1212.

  9. M. Khovanov, A. D. Lauda, A categorification of quantum , Quantum Topol. 1 (2010), no. 1, 1–92.

  10. M. Khovanov, A. D. Lauda, M. Mackaay, M. Stošić, Extended Graphical Calculus for Categori_ed Quantum FX, Mem. Amer. Math. Soc. 219 (2012), no. 1029.

  11. G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics, Vol. 110, Birkhäuser Boston, Boston, MA, 1993.

  12. M. Mackaay, M. Stošić, P. Vaz, A diagrammatic categorification of the q-Schur algebra, Quantum Topol. 4 (2013), no. 1, 1–75.

  13. R. Rouquier, 2-Kac-Moody algebras, arxiv0812.5023 (2008).

  14. W. Soergel, Corrections for “On the relation between intersection cohomology and representation theory in positive characteristic", http://home.mathematik.uni-freiburg.de/soergel/PReprints/KorrICP.pdf.

  15. W. Soergel, Kategorie , perverse Garben und Moduln über den Koinvariantenzur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445.

  16. W. Soergel, The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math. 429 (1992), 49–74.

  17. W. Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, in: Commutative Algebra, Homological Algebra and Representation Theory (Catania/Genoa/Rome, 1998), J. Pure Appl. Algebra 152 (2000), no. 1–3, 311–335.

  18. O. Schiffmann, E. Vasserot, Geometric construction of the global base of the quantum modified algebra of FX, Transform. Groups 5 (2000), no. 4, 351–360.

  19. B. Webster, Knot invariants and higher representation theory, to appear in the Memoirs of the American Mathematical Society, arxiv1309.3796 (2015).

  20. B. Webster, Canonical bases and higher representation theory, Compos. Math. 151 (2015), no. 1, 121–166.

  21. G. Williamson, Singular Soergel bimodules, http://people.mpim-bonn.mpg.de/geordie/GW-thesis.pdf.

  22. B. Webster, G. Williamson, A geometric model for Hochschild homology of Soergel bimodules, Geom. Topol. 12 (2008), no. 2, 1243–1263.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BEN WEBSTER.

Additional information

*Supported by the NSF under Grant DMS-1151473 and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

WEBSTER, B. COMPARISON OF CANONICAL BASES FOR SCHUR AND UNIVERSAL ENVELOPING ALGEBRAS. Transformation Groups 22, 869–883 (2017). https://doi.org/10.1007/s00031-016-9409-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-016-9409-2

Navigation