Skip to main content
Log in

Local well-posedness and blow-up phenomenon for a generalization two-component Camassa–Holm system

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, a new generalized two-component Camassa–Holm system is derived via the energy variational approach. This system has two parameters which depend on the energy functional. The initial value problem is investigated. The local well-posedness is obtained when the initial density is away from vacuum. Taking advantage of the method of characteristics and the conservation laws, we prove the blow-up criteria. According to the blow-up criteria, we can prove the finite time blow-up result under some suitable condition. Moreover, we give some exact expression of traveling solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Byrd and M. D. Friedman. Handbook of elliptic integrals for engineers and scientists. Die Grundlehren der mathematischen Wissenschaften, Band 67. Springer-Verlag, New York-Heidelberg, 1971. Second edition, revised.

  2. R. Camassa and D. D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71(11):1661–1664, 1993.

    Article  MathSciNet  Google Scholar 

  3. R. Camassa, D. D. Holm, and J. Hyman. A new integrable shallow water equation. Adv. Appl. Mech., 31:1–33, 1994.

    Article  Google Scholar 

  4. A. Constantin. The Hamiltonian structure of the Camassa–Holm equation. Exposition. Math., 15(1):53–85, 1997.

    MathSciNet  MATH  Google Scholar 

  5. A. Constantin. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble), 50(2):321–362, 2000.

    Article  MathSciNet  Google Scholar 

  6. A. Constantin and J. Escher. Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26(2):303–328, 1998.

    MathSciNet  MATH  Google Scholar 

  7. A. Constantin and J. Escher. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math., 181(2):229–243, 1998.

    Article  MathSciNet  Google Scholar 

  8. A. Constantin and J. Escher. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51(5):475–504, 1998.

    Article  MathSciNet  Google Scholar 

  9. A. Constantin and R. I. Ivanov. On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A, 372(48):7129–7132, 2008.

    Article  MathSciNet  Google Scholar 

  10. A. Constantin and D. Lannes. The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal., 192(1):165–186, 2009.

    Article  MathSciNet  Google Scholar 

  11. A. Constantin and L. Molinet. Global weak solutions for a shallow water equation. Comm. Math. Phys., 211(1):45–61, 2000.

    Article  MathSciNet  Google Scholar 

  12. A. Constantin and W. A. Strauss. Stability of peakons. Comm. Pure Appl. Math., 53(5):603–610, 2000.

    Article  MathSciNet  Google Scholar 

  13. R. Danchin. A few remarks on the Camassa–Holm equation. Differential Integral Equations, 14(8):953–988, 2001.

    MathSciNet  MATH  Google Scholar 

  14. R. Danchin. A note on well-posedness for Camassa–Holm equation. J. Differential Equations, 192(2):429–444, 2003.

    Article  MathSciNet  Google Scholar 

  15. J. Escher, O. Lechtenfeld, and Z. Yin. Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst., 19(3):493–513, 2007.

    Article  MathSciNet  Google Scholar 

  16. B. Fuchssteiner and A. S. Fokas. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D, 4(1):47–66, 1981.

    Article  MathSciNet  Google Scholar 

  17. K. Grunert, H. Holden, and X. Raynaud. Global solutions for the two-component Camassa–Holm system. Comm. Partial Differential Equations, 37(12):2245–2271, 2012.

    Article  MathSciNet  Google Scholar 

  18. C. Guan and Z. Yin. Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system. J. Differential Equations, 248(8):2003–2014, 2010.

    Article  MathSciNet  Google Scholar 

  19. C. Guan and Z. Yin. Global weak solutions for a two-component Camassa–Holm shallow water system. J. Funct. Anal., 260(4):1132–1154, 2011.

    Article  MathSciNet  Google Scholar 

  20. G. Gui and Y. Liu. On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal., 258(12):4251–4278, 2010.

    Article  MathSciNet  Google Scholar 

  21. G. Gui and Y. Liu. On the Cauchy problem for the two-component Camassa–Holm system. Math. Z., 268(1-2):45–66, 2011.

    Article  MathSciNet  Google Scholar 

  22. Z. Guo, X. Liu, L. Molinet, and Z. Yin. Ill-posedness of the Camassa–Holm and related equations in the critical space. J. Differential Equations, 266(2-3):1698–1707, 2019.

    Article  MathSciNet  Google Scholar 

  23. D. Ionescu-Kruse. Variational derivation of the Camassa–Holm shallow water equation. J. Nonlinear Math. Phys., 14(3):303–312, 2007.

    Article  MathSciNet  Google Scholar 

  24. D. Ionescu-Kruse. Variational derivation of the Camassa–Holm shallow water equation with non-zero vorticity. Discrete Contin. Dyn. Syst., 19(3):531–543, 2007.

    Article  MathSciNet  Google Scholar 

  25. D. Ionescu-Kruse. Variational derivation of two-component Camassa–Holm shallow water system. Appl. Anal., 92(6):1241–1253, 2013.

    Article  MathSciNet  Google Scholar 

  26. J. Li and Z. Qiao. Bifurcations and exact traveling wave solutions of the generalized two-component Camassa–Holm equation. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22(12):1250305, 13, 2012.

    Article  MathSciNet  Google Scholar 

  27. J. Li and Z. Yin. Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces. J. Differential Equations, 261(11):6125–6143, 2016.

    Article  MathSciNet  Google Scholar 

  28. W. Luo and Z. Yin. Gevrey regularity and analyticity for Camassa–Holm type systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18(3):1061–1079, 2018.

    MathSciNet  MATH  Google Scholar 

  29. G. Rodríguez-Blanco. On the Cauchy problem for the Camassa–Holm equation. Nonlinear Anal., 46(3):309–327, 2001.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, J., Luo, W. et al. Local well-posedness and blow-up phenomenon for a generalization two-component Camassa–Holm system. J. Evol. Equ. 19, 935–963 (2019). https://doi.org/10.1007/s00028-019-00503-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00503-x

Keywords

Mathematics Subject Classification

Navigation