Skip to main content
Log in

Analyticity of the Dirichlet-to-Neumann semigroup on continuous functions

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \) be a bounded open subset with \(C^{1+\kappa }\)-boundary for some \(\kappa > 0\). Consider the Dirichlet-to-Neumann operator associated with the elliptic operator \(- \sum \partial _l ( c_{kl} \, \partial _k ) + V\), where the \(c_{kl} = c_{lk}\) are Hölder continuous and \(V \in L_\infty (\Omega )\) are real valued. We prove that the Dirichlet-to-Neumann operator generates a \(C_0\)-semigroup on the space \(C(\partial \Omega )\) which is in addition holomorphic with angle \(\frac{\pi }{2}\). We also show that the kernel of the semigroup has Poisson bounds on the complex right half-plane. As a consequence, we obtain an optimal holomorphic functional calculus and maximal regularity on \(L_p(\Gamma )\) for all \(p \in (1,\infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Batty, C. J. K., Hieber, M. and Neubrander, F., Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics 96. Birkhäuser, Basel, 2001.

  2. Arendt, W. and Elst, A. F. M. ter, The Dirichlet-to-Neumann operator on rough domains. J. Differential Equations 251 (2011), 2100–2124.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt, W. and Elst, A. F. M. ter, Ultracontractivity and eigenvalues: Weyl’s law for the Dirichlet-to-Neumann operator. Integral Equations Operator Theory 88 (2017), 65–89.

    Article  MathSciNet  MATH  Google Scholar 

  4. Arendt, W. and Elst, A. F. M. ter, The Dirichlet-to-Neumann operator on \(C(\partial \Omega )\), 2017. arXiv:1707.05556

  5. Arendt, W. and Mazzeo, R., Friedlander’s eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Commun. Pure Appl. Anal. 11 (2012), 2201–2212.

    Article  MathSciNet  MATH  Google Scholar 

  6. Behrndt, J. and Elst, A. F. M. ter, Dirichlet-to-Neumann maps on bounded Lipschitz domains. J. Differential Equations 259 (2015), 5903–5926.

    Article  MathSciNet  MATH  Google Scholar 

  7. Daners, D., Glück, J. and Kennedy, J. B., Eventually positive semigroups of linear operators. J. Math. Anal. Appl. 433 (2016), 1561–1593.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dore, G. and Venni, A., On the closedness of the sum of two closed operators. Math. Z. 196 (1987), 189–201.

    Article  MathSciNet  MATH  Google Scholar 

  9. Duong, X. T. and Robinson, D. W., Semigroup kernels, Poisson bounds, and holomorphic functional calculus. J. Funct. Anal. 142 (1996), 89–129.

    Article  MathSciNet  MATH  Google Scholar 

  10. Engel, K.-J., The Laplacian on \(C(\overline{\Omega })\) with generalized Wentzell boundary conditions. Arch. Math. 81 (2003), 548–558.

    Article  MathSciNet  MATH  Google Scholar 

  11. Elst, A. F. M. ter and Ouhabaz, E.-M., Analysis of the heat kernel of the Dirichlet-to-Neumann operator. J. Funct. Anal. 267 (2014), 4066–4109.

    Article  MathSciNet  MATH  Google Scholar 

  12. Elst, A. F. M. ter and Ouhabaz, E.-M., Dirichlet-to-Neumann and elliptic operators on \(C^{1+\kappa }\)-domains: Poisson and Gaussian bounds, 2017. arXiv:1705.10158.

  13. Escher, J., The Dirichlet-Neumann operator on continuous functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 21 (1994), 235–266.

    MathSciNet  MATH  Google Scholar 

  14. Gimperlein, H. and Grubb, G., Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators. J. Evol. Equ. 14 (2014), 49–83.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hauer, D., The \(p\)-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems. J. Differential Equations 259 (2015), 3615–3655.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kato, T., Perturbation theory for linear operators. Second edition, Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag, Berlin etc., 1980.

  17. Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems, vol. 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel, 1995.

  18. Nittka, R., Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains. J. Differential Equations 251 (2011), 860–880.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ouhabaz, E.-M., Gaussian estimates and holomorphy of semigroups. Proc. Amer. Math. Soc. 123 (1995), 1465–1474.

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, D. and Zhou, Y., Non-Gaussian upper estimates for heat kernels on spaces of homogeneous type. Proc. Amer. Math. Soc. 136 (2008), 2155–2163.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was carried out when the second named author was visiting the University of Auckland and the first named author was visiting the University of Bordeaux. Both authors wish to thank the universities for hospitalities. The research of A.F.M. ter Elst is partly supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand. The research of E.M. Ouhabaz is partly supported by the ANR project ‘Harmonic Analysis at its Boundaries’, ANR-12-BS01-0013-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. M. ter Elst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elst, A.F.M.t., Ouhabaz, E.M. Analyticity of the Dirichlet-to-Neumann semigroup on continuous functions. J. Evol. Equ. 19, 21–31 (2019). https://doi.org/10.1007/s00028-018-0467-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0467-x

Keywords

Mathematics Subject Classification

Navigation