Skip to main content
Log in

Numerical Modeling of the June 17, 2017 Landslide and Tsunami Events in Karrat Fjord, West Greenland

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On June 17 2017, the western coast of Greenland was the site of a tsunami which flooded several villages, killing 4 people and destroying 11 houses in the village of Nuugaatsiaq. This tsunami was triggered by a subaerial landslide which occurred in a fjord 32 km ENE of Nuugaatsiaq. This paper presents the numerical modeling of this landslide of \(\sim\) 50 million \(\hbox {m}^{3}\) and of the tsunami propagation from its source to Nuugaatsiaq. The landslide is considered as a granular flow under gravity forces and the water waves generated are related to the displacement of the sea bottom. The results obtained are similar in amplitude to our inferences from videos, i.e., three water waves between 1 and 1.5 m arriving at Nuugaatsiaq with a period of roughly 3 min, and are also in general agreement with the amplitude (1 m) resulting from deconvolution of oscillations recorded on a horizontal seismogram operating at Nuugaatsiaq (NUUG). According to the field survey performed by Fritz et al. (EGU General Assembly Conference Abstracts, Vol. 20 of EGU General Assembly Conference Abstracts, p 18345, 2018a) on July 2017, a second mass next to the landslide is threatening Karrat Fjord. A sensitivity study is realized on its volume, with 2, 7, 14 and 38 million \(\hbox {m}^{3}\) reaching the sea. The shape of the water waves is found to be independent of volume, and linearity is observed between the volume and the water wave heights. Finally, the orientation of the slide does not seem to influence either the period or the shape of the generated water waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. To see the videos, click on the links below:

    https://www.youtube.com/watch?v=jBmkT5y52ng

    https://www.youtube.com/watch?v=LzSUDBbSsPI

    https://www.youtube.com/watch?v=amWshLXe74s

    https://www.youtube.com/watch?v=tWvYFMo2LsQ.

  2. Photos of the aerial survey are visible here: https://goo.gl/XRJomU.

  3. This video for example:

    https://www.youtube.com/watch?v=amWshLXe74s.

  4. Around 0:46 on this video:

    https://www.youtube.com/watch?v=jBmkT5y52ng.

References

  • Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research Oceans, 117(5), 1–26.

    Google Scholar 

  • Ambraseys, N., & Bilham, R. (2012). The Sarez–Pamir earthquake and landslide of 18 February 1911. Seismological Research Letters, 83(2), 294–314.

    Article  Google Scholar 

  • Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P. C., Savoye, B., & Bourillet, J. F. (2000). Numerical modelling of a landslide-generated Tsunami: The 1979 nice event. Pure and Applied Geophysics, 157(10), 1707–1727.

    Article  Google Scholar 

  • Chao, W.-A., Wu, T.-R., Ma, K.-F., Kuo, Y.-T., Wu, Y.-M., Zhao, L., et al. (2018). The large greenland landslide of 2017: Was a Tsunami warning possible? Seismological Research Letters, 89(4), 1335–1344.

    Article  Google Scholar 

  • Clinton, J., Larsen, T., Dahl-Jensen, T., Voss, P., & Nettles, M. (2017). Special event: Nuugaatsiaq Greenland landslide and tsunami. Incorporated Research Institutions for Seismology Washington DC . https://ds.iris.edu/ds/nodes/dmc/specialevents/2017/06/22/nuugaatsiaq-greenland-landslide-and-tsunami/.

  • Dahl-Jensen, T., Larsen, L. M., Pedersen, S. A. S., Pedersen, J., Jepsen, H. F., Pedersen, G., et al. (2004). Landslide and Tsunami 21 November 2000 in Paatuut, West Greenland. Natural Hazards, 31(1), 277–287.

    Article  Google Scholar 

  • Ekström, G., & Stark, C. P. (2013). Simple scaling of catastrophic landslide dynamics. Science, 339(6126), 1416–1419.

    Article  Google Scholar 

  • Fine, I. V., Rabinovich, A. B., Thomson, R. E., & Kulikov, E. A. (2003). Numerical modeling of Tsunami generation by submarine and subaerial landslides (pp. 69–88). Dordrecht: Springer.

    Book  Google Scholar 

  • Fritz, H. M. (2002). Initial phase of landslide generated impulse waves. PhD Thesis, ETH Zurich.

  • Fritz, H. M., Giachetti, T., Anderson, S., & Gauthier, D. (2018a). Field survey of the 17 June 2017 landslide generated Tsunami in Karrat Fjord, Greenland. In EGU General Assembly Conference Abstracts, Vol. 20 of EGU General Assembly Conference Abstracts, p. 18345.

  • Fritz, H. M., Synolakis, C., Kalligeris, N., Skanavis, V., Santoso, F., Rizal, M., et al. (2018b). Field survey of the 28 September 2018 Sulawesi tsunami. Eos Transactions American Geophysical Union, 99, 53. (NH22B-04, [abstract]).

    Google Scholar 

  • Gauthier, D., Anderson, S. A., Fritz, H. M., & Giachetti, T. (2018). Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: Initial 3D observations. Landslides, 15(2), 327–332.

    Article  Google Scholar 

  • Geist, E. L. (2000). Origin of the 17 July 1998 Papua New Guinea Tsunami: Earthquake or landslide. Seismological Research Letters, 71(3), 344–351.

    Article  Google Scholar 

  • Gilbert, J. (1980). An introduction to low-frequency seismology. In A. Dziewopnski & E. Boschi (Eds.), Proceedings of the International School of Physics “Enrico Fermi’ (Vol. 78, pp. 41–81). Amsterdam: North Holland.

    Google Scholar 

  • Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: Does it really matter? Natural Hazards and Earth System Sciences, 13, 1507–1526.

    Article  Google Scholar 

  • Guérin, C. (2017). Effect of the DTM quality on the bundle block adjustment and orthorectification process without GCP: Example on a steep area. In Proceedings of 2017 IEEE international geoscience remote sensing symposium (IGARSS). IEEE, pp. 1067–1070.

  • Guérin, C., Binet, R., & Pierrot-Deseilligny, M. (2014). Automatic detection of elevation changes by differential DSM analysis: Application to urban areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4020–4037.

    Article  Google Scholar 

  • Haeberli, W., & Gruber, S. (2009). Global warming and mountain permafrost (pp. 205–218). Berlin: Springer.

    Google Scholar 

  • Hanson, J. A., & Bowman, J. R. (2005). Dispersive and reflected tsunami signals from the 2004 Indian Ocean tsunami observed on hydrophones and seismic stations. Geophysical Research Letters, 32, 17.

    Article  Google Scholar 

  • Hébert, H., Piatanesi, A., Heinrich, P., & Schindelé, F. (2002). Numerical modeling of the September 13, 1999 landslide and tsunami on Fatu Hiva Island (French Polynesia). Geophysical Research Letters, 29(10), 10–13.

    Article  Google Scholar 

  • Heinrich, P., Boudon, G., Komorowski, J. C., Sparks, R. S. J., Herd, R., & Voight, B. (2001b). Numerical simulation of the December 1997 Debris Avalanche in Montserrat, Lesser Antilles. Geophysical Research Letters, 28(13), 2529–2532.

    Article  Google Scholar 

  • Heinrich, P., & Piatanesi, A. (2000). Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea. Geophysical Research Letters, 27(19), 3037–3040.

    Article  Google Scholar 

  • Heinrich, P., Piatanesi, A., & Hébert, H. (2001a). Numerical modelling of tsunami generation and propagation from submarine slumps: The 1998 Papua New Guinea event. Geophysical Journal International, 145(1), 97–111.

    Article  Google Scholar 

  • Hermanns, R. L., Blikra, L. H., Naumann, M., Nilsen, B., Panthi, K. K., Stromeyer, D., et al. (2006). Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Engineering Geology, 83(1–3), 94–108.

    Article  Google Scholar 

  • Higman, B., Shugar, D. H., Stark, C. P., Ekström, G., Koppes, M. N., Lynett, P., et al. (2018). The 2015 landslide and tsunami in Taan Fiord, Alaska. Scientific Reports, 8(1), 12993.

    Article  Google Scholar 

  • Huggel, C., Clague, J. J., & Korup, O. (2012). Is climate change responsible for changing landslide activity in high mountains? Earth Surface Processes and Landforms, 37(1), 77–91.

    Article  Google Scholar 

  • ICAO. (1955). International Civil Aviation (ICAO) Meteorological Stations in Greenland. ICAO Bulletin, 10(7), 7–11.

    Google Scholar 

  • Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., et al. (2012). The international bathymetric chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters, 39, L12609.

    Google Scholar 

  • La Rocca, M., Galluzzo, D., Saccorotti, G., Tinti, S., Cimini, G. B., & Del Pezzo, E. (2004). Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy. Bulletin of the Seismological Society of America, 94(5), 1850–1867.

    Article  Google Scholar 

  • Labbé, M., Donnadieu, C., Daubord, C., & Hébert, H. (2012). Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): Comparison with coastal data. Journal of Geophysical Research Earth Surface, 117, F1.

    Google Scholar 

  • Le Friant, A., Heinrich, P., Deplus, C., & Boudon, G. (2003). Numerical simulation of the last flank-collapse event of Montagne Pelée, Martinique, Lesser Antilles. Geophysical Research Letters, 30, 2.

    Article  Google Scholar 

  • Løvholt, F., Pedersen, G., & Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research Oceans, 113(9), 1–21.

    Google Scholar 

  • McNamara, D., Ringler, A., Hutt, C., & Gee, L. (2011). Seismically observed seiching in the Panama Canal. Journal of Geophysical Research Solid Earth, 116, B4.

    Google Scholar 

  • Mergili, M., Fischer, J.-T., Krenn, J., & Pudasaini, S. P. (2017). r.avaflow v1, and advances open-source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, 10(2), 553–569.

    Article  Google Scholar 

  • Miller, D. J. (1960). Giant waves in Lituya Bay, Alaska. US Geological Survey Professional Paper, 354-C.

  • Naranjo, J. A., Arenas, M., Clavero, J., & Muñoz, O. (2009). Mass movement-induced tsunamis: Main effects during the Patagonian Fjordland seismic crisis in Aisén (\(45^{\circ }\) 25’S), Chile. Andean Geology, 36, 1.

    Google Scholar 

  • NOAA. (2018). National Geophysical Data Center/ World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.hazards:G02151

  • Okal, E. A. (2003). \(T\) waves from the 1998 Papua New Guinea earthquake and its aftershocks: Timing the tsunamigenic slump. Pure and Applied Geophysics, 160, 1843–1863.

    Article  Google Scholar 

  • Okal, E. A. (2007). Seismic records of the 2004 Sumatra and other tsunamis: A quantitative study. Pure and Applied Geophysics, 164, 325–353.

    Article  Google Scholar 

  • Okal, E. A., Fryer, G. J., Borrero, J. C., & Ruscher, C. (2002). The landslide and local tsunami of 13 September 1999 on Fatu Hiva (Marquesas islands; French Polynesia). Bulletin de la Société géologique de France, 173(4), 359–367.

    Article  Google Scholar 

  • Okal, E. A., & Synolakis, C. E. (2001). Comment on “Origin of the 17 July 1998 Papua New Guinea tsunami: Earthquake or landslide?” by EL Geist. Seismological Research Letters, 72(3), 363–366.

    Article  Google Scholar 

  • Okal, E. A., & Synolakis, C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides. Pure and Applied Geophysics, 160(10–11), 2177–2188.

    Article  Google Scholar 

  • Pedersen, S. A. S., Larsen, L. M., Dahl-jensen, T., Jepsen, H. F., Krarup, G., Nielsen, T., et al. (2002). Tsunami-generating rock fall and landslide on the south coast of Nuussuaq, central West Greenland. Geology of Greenland Survey Bulletin, 191, 73–83.

    Google Scholar 

  • Pierrot-Deseilligny, M., Paparoditis, N. (2006). A multiresolution and optimization-based image matching approach: An application to surface reconstruction from SPOT5-HRS stereo imagery. In IAPRS vol XXXVI-1/W41 in ISPRS Workshop On Topographic Mapping From Space (With Special Emphasis on Small Satellites, Ankara, Turquie).

  • Pouliquen, O. (1999). Scaling laws in granular flows down rough inclined planes. Physics of Fluids, 11(3), 542–548.

    Article  Google Scholar 

  • Poupardin, A., Heinrich, P., Frère, A., Imbert, D., Hébert, H., & Flouzat, M. (2017). The 1979 submarine landslide-generated Tsunami in Mururoa, French Polynesia. Pure and Applied Geophysics, 174, 3293–3311.

    Article  Google Scholar 

  • Rodriguez, M., Chamot-Rooke, N., Hébert, H., Fournier, M., & Huchon, P. (2013). Owen Ridge deep-water submarine landslides: Implications for tsunami hazard along the Oman coast. Natural Hazards and Earth System Science, 13, 417–424.

    Article  Google Scholar 

  • Saito, M. (1967). Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous earth. Journal of Geophysical Research, 72(14), 3689–3699.

    Article  Google Scholar 

  • Satake, K., Smith, J., & Shinozaki, K. (2002). Three-dimensional reconstruction and tsunami model of the Nuuanu and Wailau giant landslides (pp. 333–346). American Geophysical Union Geophysical Monograph Series: Hawaii.

  • Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.

    Article  Google Scholar 

  • Savage, S. B., & Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica, 86(1), 201–223.

    Article  Google Scholar 

  • Scharroo, R., Smith, W., Titov, V., & Arcas, D. (2005). Observing the Indian Ocean tsunami with satellite altimetry. Geophysical Research Abstracts, 7, 230.

    Google Scholar 

  • Scheidegger, A. E. (1973). On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics and Rock Engineering, 5(4), 231–236.

    Article  Google Scholar 

  • Schuster, R. L., & Alford, D. (2004). Usoi landslide dam and lake sarez, Pamir mountains, Tajikistan. Environmental and Engineering Geoscience, 10(2), 151–168.

    Article  Google Scholar 

  • Sepúlveda, S. A., & Serey, A. (2009). Tsunamigenic, earthquake-triggered rock slope failures during the April 21, 2007 Aisén earthquake, southern Chile (45.5 S). Andean Geology, 36, 1.

    Google Scholar 

  • Shuto, N. (1991). Numerical simulation of tsunamis—its present and near future. Natural Hazards, 4, 171–191.

    Article  Google Scholar 

  • Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., Sweet, S., & Tappin, D. R. (2002). The slump origin of the 1998 Papua New Guinea tsunami. In Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol. 458, The Royal Society, pp. 763–789.

  • Thomson, R. E., Rabinovich, A. B., Kulikov, E. A., Fine, I. V., & Bornhold, B. D. (2001). On Numerical simulation of the landslide-generated Tsunami of November 3, 1994 in Skagway Harbor (pp. 243–282). Dordrecht: Springer.

    Google Scholar 

  • Tinti, S., Pagnoni, G., & Zaniboni, F. (2006). The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations. Bulletin of Volcanology, 68(5), 462–479.

    Article  Google Scholar 

  • Viroulet, S., Cébron, D., Kimmoun, O., & Kharif, C. (2013). Shallow water waves generated by subaerial solid landslides. Geophysical Journal International, 193(2), 747–762.

    Article  Google Scholar 

  • Voight, B. (1981). The 1980 eruptions of Mount St. Helens, Washington. Time scale for the first moments of the May 18 eruption. US Geological Survey Professional Paper, 1250, 69–86.

    Google Scholar 

  • Wang, J., Ward, S. N., & Xiao, L. (2015). Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chehalis Lake, Canada. Geophysical Journal International, 201(1), 372–376.

    Article  Google Scholar 

  • Ward, S. N. (1980). Relationships of tsunami generation and an earthquake source. Journal of Physics of the Earth, 28(5), 441–474.

    Article  Google Scholar 

  • Ward, S. N., & Day, S. (2011). The 1963 landslide and flood at Vajont Reservoir Italy. A tsunami ball simulation. Italian Journal of Geosciences, 130(1), 16–26.

    Google Scholar 

  • Weiss, R., Fritz, H. M., & Wünnemann, K. (2009). Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophysical Research Letters, 36, 9.

    Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos Transactions American Geophysical Union, 72(41), 441–446.

    Article  Google Scholar 

  • Yuan, X., Kind, R., & Pedersen, H. A. (2005). Seismic monitoring of the Indian Ocean tsunami. Geophysical Research Letters, 32, 15.

    Article  Google Scholar 

Download references

Acknowledgements

We thank John Clinton, Director of Seismic Networks, ETH, Zürich, for access to the NUUG seismograms, and for critical metadata concerning their misorientation. Some figures were produced using the GMT software (Wessel and Smith 1991). This work was supported by the LRC Yves Rocard (Laboratoire de Recherche Conventionné CEA-ENS). The paper was improved by the constructive comments of David Tappin and a second, anonymous, reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Paris.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paris, A., Okal, E.A., Guérin, C. et al. Numerical Modeling of the June 17, 2017 Landslide and Tsunami Events in Karrat Fjord, West Greenland. Pure Appl. Geophys. 176, 3035–3057 (2019). https://doi.org/10.1007/s00024-019-02123-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02123-5

Keywords

Navigation