Skip to main content
Log in

Approximation of Fractals by Discrete Graphs: Norm Resolvent and Spectral Convergence

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We show a norm convergence result for the Laplacian on a class of pcf self-similar fractals with arbitrary Borel regular probability measure which can be approximated by a sequence of finite-dimensional weighted graph Laplacians. As a consequence other functions of the Laplacians (heat operator, spectral projections etc.) converge as well in operator norm. One also deduces convergence of the spectrum and the eigenfunctions in energy norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, B., Smith, S.A., Strichartz, R.S., Teplyaev, A.: The spectrum of the Laplacian on the pentagasket. In: Grabner, P., Woess, W. (eds.) Fractals in Graz 2001. Trends in Mathematics, pp. 1–24. Birkhäuser, Basel (2003)

    Google Scholar 

  2. Ben-Bassat, O., Strichartz, R.S., Teplyaev, A.: What is not in the domain of the Laplacian on Sierpinski gasket type fractals. J. Funct. Anal. 166, 197–217 (1999)

    Article  MathSciNet  Google Scholar 

  3. Brzoska, A., Coffey, A., Hansalik, M., Loew, S., Rogers, L.G.: Spectra of magnetic operators on the diamond lattice fractal. arXiv:1704.01609 (2017)

  4. Berry, T., Heilman, S.M., Strichartz, R.S.: Outer approximation of the spectrum of a fractal Laplacian. Exp. Math. 18, 449–480 (2009)

    Article  MathSciNet  Google Scholar 

  5. Blasiak, A., Strichartz, R.S., Uğurcan, B.E.: Spectra of self-similar Laplacians on the Sierpinski gasket with twists. Fractals 16, 43–68 (2008)

    Article  MathSciNet  Google Scholar 

  6. Dondl, P., Cherednichenko, K., Rösler, F.: Norm-resolvent convergence in perforated domains. Asymptot. Anal. arXiv:1706.05859 (2018) (to appear)

  7. Fukushima, M., Shima, T.: On a spectral analysis for the Sierpiński gasket. Potential Anal. 1, 1–35 (1992)

    Article  MathSciNet  Google Scholar 

  8. Gibbons, M., Raj, A., Strichartz, R.S.: The finite element method on the Sierpinski gasket. Constr. Approx. 17, 561–588 (2001)

    Article  MathSciNet  Google Scholar 

  9. Hyde, J., Kelleher, D., Moeller, J., Rogers, L., Seda, L.: Magnetic Laplacians of locally exact forms on the Sierpinski Gasket. Commun. Pure Appl. Anal. 16, 2299–2319 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hinz, M., Rogers, L.: Magnetic fields on resistance spaces. J. Fractal Geom. 3, 75–93 (2016)

    Article  MathSciNet  Google Scholar 

  11. Hinz, M., Teplyaev, A.: Vector analysis on fractals and applications. In: Carfì, D., Lapidus, M.L., Pearse, E.P.J., van Frankenhuijsen, M. (eds.) Fractal geometry and Dynamical Systems in Pure and Applied Mathematics. II: Fractals in Applied. Contemporary Mathematics, vol. 601, pp. 147–163. American Mathematical Society, Providence (2013)

  12. Hinz, M., Teplyaev, A.: Closability, regularity, and approximation by graphs for separable bilinear forms. Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 441, 299–317 (2015)

    MATH  Google Scholar 

  13. Ionescu, M., Pearse, E.P.J., Rogers, L.G., Ruan, H.-J., Strichartz, R.S.: The resolvent kernel for PCF self-similar fractals. Trans. Am. Math. Soc. 362, 4451–4479 (2010)

    Article  MathSciNet  Google Scholar 

  14. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  15. Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Am. Math. Soc. 335, 721–755 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Kigami, J.: Harmonic metric and Dirichlet form on the Sierpiński gasket. In: Elworthy, K.D., Ikeda, N. (eds.) Asymptotic Problems in Probability Theory: Stochastic Mand Diffusions on Fractals (Sanda, Kyoto, 1990). Pitman Research Notes in Mathematics Series, vol. 283, pp. 201–218. Longman Scientific and Technical, Harlow (1993)

    Google Scholar 

  17. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  18. Khrabustovskyi, A., Post, O.: Operator estimates for the crushed ice problem. Asymptot. Anal. arXiv:1710.03080 (2018) (to appear)

  19. Kuwae, K., Shioya, T.: Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry. Commun. Anal. Geom. 11, 599–673 (2003)

    Article  MathSciNet  Google Scholar 

  20. Mosco, U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123, 368–421 (1994)

    Article  MathSciNet  Google Scholar 

  21. Post, O.: Spectral convergence of quasi-one-dimensional spaces. Ann. Henri Poincaré 7, 933–973 (2006)

    Article  MathSciNet  Google Scholar 

  22. Post, O.: Spectral Analysis on Graph-Like Spaces. Lecture Notes in Mathematics, vol. 2039. Springer, Heidelberg (2012)

    Book  Google Scholar 

  23. Post, O.: Boundary pairs associated with quadratic forms. Math. Nachr. 289, 1052–1099 (2016)

    Article  MathSciNet  Google Scholar 

  24. Post, O., Simmer, J.: Approximation of fractals by manifolds and other graph-like spaces. arXiv:1802.02998 (2018)

  25. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  26. Shima, T.: On eigenvalue problems for Laplacians on p.c.f. self-similar sets. Jpn. J. Ind. Appl. Math. 13, 1–23 (1996)

    Article  MathSciNet  Google Scholar 

  27. Strichartz, R.S.: Fractafolds based on the Sierpiński gasket and their spectra. Trans. Am. Math. Soc. 355, 4019–4043 (2003)

    Article  Google Scholar 

  28. Strichartz, R.S.: Differential Equations on Fractals. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  29. Strichartz, R.S., Usher, M.: Splines on fractals. Math. Proc. Camb. Philos. Soc. 129, 331–360 (2000)

    Article  MathSciNet  Google Scholar 

  30. Teplyaev, A.: Harmonic coordinates on fractals with finitely ramified cell structure. Can. J. Math. 60, 457–480 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Post.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Post, O., Simmer, J. Approximation of Fractals by Discrete Graphs: Norm Resolvent and Spectral Convergence. Integr. Equ. Oper. Theory 90, 68 (2018). https://doi.org/10.1007/s00020-018-2492-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2492-0

Keywords

Navigation