Skip to main content
Log in

General analysis of antideuteron searches for dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Lowenergycosmicrayantideuteronsprovideauniquelowbackgroundchannel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bottino, F. Donato, N. Fornengo and P. Salati, Which fraction of the measured cosmic ray antiprotons might be due to neutralino annihilation in the galactic halo?, Phys. Rev. D 58 (1998) 123503 [astro-ph/9804137] [SPIRES].

    ADS  Google Scholar 

  2. L. Bergstrom, J. Edsjo and P. Ullio, Cosmic antiprotons as a probe for neutralino dark matter?, astro-ph/9906034 [SPIRES].

  3. F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D 69 (2004) 063501 [astro-ph/0306207] [SPIRES].

    ADS  Google Scholar 

  4. A. Barrau et al., Kaluza-Klein Dark Matter and Galactic Antiprotons, Phys. Rev. D 72 (2005) 063507 [astro-ph/0506389] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. P. Grajek, G. Kane, D.J. Phalen, A. Pierce and S. Watson, Neutralino Dark Matter from Indirect Detection Revisited, arXiv:0807.1508 [SPIRES].

  6. M. Cirelli, R. Franceschini and A. Strumia, Minimal Dark Matter predictions for galactic positrons, anti-protons, photons, Nucl. Phys. B 800 (2008) 204 [arXiv:0802.3378] [SPIRES].

    Article  ADS  Google Scholar 

  7. M. Cirelli and A. Strumia, Minimal Dark Matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [SPIRES].

    Article  ADS  Google Scholar 

  8. E. Nezri, M.H.G. Tytgat and G. Vertongen, Positrons and antiprotons from inert doublet model dark matter, JCAP 04 (2009) 014 [arXiv:0901.2556] [SPIRES].

    ADS  Google Scholar 

  9. BESS collaboration, S. Orito et al., Precision measurement of cosmic-ray antiproton spectrum, Phys. Rev. Lett. 84 (2000) 1078 [astro-ph/9906426] [SPIRES].

    Article  ADS  Google Scholar 

  10. BESS collaboration, T. Maeno et al., Successive measurements of cosmic-ray antiproton spectrum in a positive phase of the solar cycle, A stropart. Phys. 16 (2001) 121 [ast ro-ph/0010381] [SPIRES].

    ADS  Google Scholar 

  11. S. Haino et al., Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer, Phys. Lett. B 594 (2004) 35 [astro-ph/0403704] [SPIRES].

    ADS  Google Scholar 

  12. H. Fuke et al., Search for Cosmic-Ray Antideuterons, Phys. Rev. Lett. 95 (2005) 081101 [astro-ph/0504361] [SPIRES].

    Article  ADS  Google Scholar 

  13. O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [SPIRES].

    Article  ADS  Google Scholar 

  14. F. Donato, D. Maurin, P. Brun, T. Delahaye and P. Salati, Constraints on W IMP Dark Matter from the High Energy PAMELA \( {{{\overline p }} \left/ {p} \right.} \) data, Phys. Rev. Lett. 102 (2009) 071301 [arXiv:0810.5292] [SPIRES].

    Article  ADS  Google Scholar 

  15. F. Donato, N. Fornengo and P. Salati, Antideuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62 (2000) 043003 [hep-ph/9904481] [SPIRES].

    ADS  Google Scholar 

  16. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [SPIRES].

    ADS  Google Scholar 

  17. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [SPIRES].

    Article  ADS  Google Scholar 

  18. H. Baer, A. Mustafayev, E.-K. Park and S. Profumo, Mixed Wino dark matter: Consequences for direct, indirect and collider detection, JHEP 07 (2005) 046 [hep-ph/0505227] [SPIRES].

    Article  ADS  Google Scholar 

  19. H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to focus point supersymmetry: From dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [SPIRES].

    Article  ADS  Google Scholar 

  20. H. Baer and S. P rofumo, Low energy antideuterons: shedding light on dark matter, JCAP 12 (2005) 008 [astro-ph/0510722] [SPIRES].

    ADS  Google Scholar 

  21. F. Donato, N. Fornengo and D. Maurin, Antideuteron fluxes from dark matter annihilation in diffusion models, Phys. Rev. D 78 (2008) 043506 [arXiv:0803.2640] [SPIRES].

    ADS  Google Scholar 

  22. A. Ibarra and D. Tran, Antideuterons from Dark Matter Decay, JCAP 06 (2009) 004 [arXiv:0904.1410] [SPIRES].

    ADS  Google Scholar 

  23. C.B. Braeuninger and M. Cirelli, Anti-deuterons from heavy Dark Matter, Phys. Lett. B 678 (2009) 20 [arXiv:0904.1165] [SPIRES].

    ADS  Google Scholar 

  24. H. Baer, R. Dermisek, S. Rajagopalan and H. Summy, Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB, JCAP 07 (2010) 014 [arXiv:1004.3297] [SPIRES].

    ADS  Google Scholar 

  25. P. Chardonnet, J. Orloff and P. Salati, The production of anti-matter in our galaxy, Phys. Lett. B 409 (1997) 313 [astro-ph/9705110] [SPIRES].

    ADS  Google Scholar 

  26. R. Duperray et al., Flux of light antimatter nuclei near earth, induced by cosmic rays in the galaxy and in the atmosphere, Phys. Rev. D 71 (2005) 083013 [astro-ph/0503544] [SPIRES].

    ADS  Google Scholar 

  27. S.P. Ahlen et al., An Antimatter spectrometer in space, Nucl. Instrum. Meth. A 350 (1994) 351 [SPIRES].

    ADS  Google Scholar 

  28. V. Choutko and F. Giovacchini, Cosmic rays antideuteron Sensitivity for AMS-02 Experiment, in the proceedings of the 30th International Cosmic Ray Conference, Mérida Mexico (2007).

  29. K. Mori et al., A novel antimatter detector based on X -ray deexcitation of exotic atoms, Astrophys. J. 566 (2002) 604 [astro-ph/0109463] [SPIRES].

    Article  ADS  Google Scholar 

  30. H. Fuke et al., Current status and future plans for the general antiparticle spectrometer (GAPS), Adv. Space Res. 41 (2008) 2056 [SPIRES].

    Article  ADS  Google Scholar 

  31. C. Arina and N. Fornengo, Sneutrino cold dark matter, a new analysis: Relic abundance and detection rates, JHEP 11 (2007) 029 [arXiv:0709.4477] [SPIRES].

    Article  ADS  Google Scholar 

  32. M. Kadastik, M. Raidal and A. Strumia, Enhanced anti-deuteron Dark Matter signal and the implications of PAMELA, Phys. Lett. B 683 (2010) 248 [arXiv:0908.1578] [SPIRES].

    ADS  Google Scholar 

  33. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  34. ALEPH collaboration, S. Schael et al., Deuteron and anti-deuteron production in e + e collisions at the Z resonance, Phys. Lett. B 639 (2006) 192 [hep-ex/0604023] [SPIRES].

    ADS  Google Scholar 

  35. J.F. Navarro, C.S. Frenk and S.D.M. White, A Universal Density Profile from Hierarchical Clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [SPIRES].

    Article  ADS  Google Scholar 

  36. A.W. Graham, D. Merritt, B. Moore, J. Diemand and B. Terzic, Empirical models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models, Astron. J. 132 (2006) 2685 [astro-ph/0509417] [SPIRES].

    Article  ADS  Google Scholar 

  37. J.N. Bahcall and R.M. Soneira, The Universe at faint magnetidues. 2. Models for the predicted star counts, Astrophys. J. Suppl. 44 (1980) 73 [SPIRES].

    Article  ADS  Google Scholar 

  38. D. Maurin, F. Donato, R. Taillet and P. Salati, Cosmic Rays below Z = 30 in a diffusion model: new constraints on propagation parameters, Astrophys. J. 555 (2001) 585 [ast ro-ph/0101231] [SPIRES].

    Article  ADS  Google Scholar 

  39. A. Barrau et al., Antiprotons from primordial black holes, Astron. Astrophys. 388 (2002) 676 [astro-ph/0112486] [SPIRES].

    Article  ADS  Google Scholar 

  40. F. Donato et al., Antiprotons from spallation of cosmic rays on interstellar matter, Astrophys. J. 563 (2001) 172 [astro-ph/0103150] [SPIRES].

    Article  ADS  Google Scholar 

  41. V.L. Ginzburg and V.S. Ptuskin, On the Origin of Cosmic Rays: Some Problems in High-Energy Astrophysics, Rev. Mod. Phys. 48 (1976) 161 [Erratum ibid. 48 (1976) 675] [SPIRES].

    Article  ADS  Google Scholar 

  42. A.W. Strong, I.V. Moskalenko and V.S. Ptuskin, Cosmic-ray propagation and interactions in the Galaxy, Ann. Rev. Nucl. Part. Sci. 57 (2007) 285 [astro-ph/0701517] [SPIRES].

    Article  ADS  Google Scholar 

  43. L.J. Gleeson and W.I. Axford, Solar Modulation of Galactic Cosmic Rays, Astrophys. J. 154 (1968) 1011 [SPIRES].

    Article  ADS  Google Scholar 

  44. T. Mitsui, K. Maki and S. Orito, Expected enhancement of the primary anti-proton flux at the solar minimum, Phys. Lett. B 389 (1996) 169 [astro-ph/9608123] [SPIRES].

    ADS  Google Scholar 

  45. J.W. Bieber et al., Antiprotons at solar maximum, Phys. Rev. Lett. 83 (1999) 674 [astro-ph/9903163] [SPIRES].

    Article  ADS  Google Scholar 

  46. Y. Asaoka et al., Measurements of cosmic-ray low-energy antiproton and proton spectra in a transient period of the solar field reversal, Phys. Rev. Lett. 88 (2002) 051101 [astro-ph/0109007] [SPIRES].

    Article  ADS  Google Scholar 

  47. Y.M. Antipov et al., Production of low momentum negative particles by 70 GeV protons, Phys. Lett. B 34 (1971) 164 [SPIRES].

    ADS  Google Scholar 

  48. H. Baer, C. Balázs, A. Belyaev and J . O’Farrill, Direct detection of dark matter in supersymmetric models, JCAP 09 (2003) 007 [hep-ph/0305191] [SPIRES].

    ADS  Google Scholar 

  49. A. Kurylov and M. Kamionkowski, Generalized analysis of weakly-interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [SPIRES].

    ADS  Google Scholar 

  50. M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [SPIRES].

    ADS  Google Scholar 

  51. Q.-H. Cao, I. Low and G. Shaughnessy, From Pamela to CDMS and Back, Phys. Lett. B 691 (2010) 73 [arXiv:0912.4510] [SPIRES].

    ADS  Google Scholar 

  52. The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].

    Article  ADS  Google Scholar 

  53. XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].

    Article  ADS  Google Scholar 

  54. F. Halzen and D. Hooper, The indirect Search for dark matter with IceCube, New J. Phys. 11 (2009) 105019 [arXiv:0910.4513] [SPIRES].

    Article  ADS  Google Scholar 

  55. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].

    ADS  Google Scholar 

  56. D.P. Finkbeiner, T.R. Slatyer and N. Weiner, Nuclear scattering of dark matter coupled to a new light scalar, Phys. Rev. D 78 (2008) 116006 [arXiv:0810.0722] [SPIRES].

    ADS  Google Scholar 

  57. T. Cohen, D.J. Phalen and A. Pierce, On the Correlation Between the Spin-Independent and Spin-Dependent Direct Detection of Dark Matter, Phys. Rev. D 81 (2010) 116001 [arXiv:1001.3408] [SPIRES].

    ADS  Google Scholar 

  58. G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [SPIRES].

    Article  ADS  Google Scholar 

  59. G. Servant and T.M.P. Tait, Elastic scattering and direct detection of Kaluza-Klein dark matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [SPIRES].

    Article  ADS  Google Scholar 

  60. H.C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].

    Article  ADS  Google Scholar 

  61. H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T -parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [SPIRES].

    ADS  Google Scholar 

  63. A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006) 035002 [hep-ph/0603077] [SPIRES].

    ADS  Google Scholar 

  64. K. Agashe and G. Servant, Warped unification, proton stability and dark matter, Phys. Rev. Lett. 93 (2004) 231805 [hep-ph/0403143] [SPIRES].

    Article  ADS  Google Scholar 

  65. K. Agashe and G. Servant, Baryon number in warped GUTs: Model building and (dark matter related) phenomenology, JCAP 02 (2005) 002 [hep-ph/0411254] [SPIRES].

    ADS  Google Scholar 

  66. C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, Higgs in Space!, JCAP 04 (2010) 004 [arXiv:0912.0004] [SPIRES].

    ADS  Google Scholar 

  67. J. McDonald, Gauge Singlet Scalars as Cold Dark Matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].

    ADS  Google Scholar 

  68. C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: A singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [SPIRES].

    Article  ADS  Google Scholar 

  69. E. Ponton and L. Randall, TeV Scale Singlet dark matter, JHEP 04 (2009) 080 [arXiv:0811.1029] [SPIRES].

    Article  ADS  Google Scholar 

  70. Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for Inelastic Dark Matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [SPIRES].

    Article  ADS  Google Scholar 

  71. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].

    ADS  Google Scholar 

  72. A. Menon, R. Morris, A. P ierce and N. Weiner, Capture and Indirect Detection of Inelastic Dark Matter, Phys. Rev. D 82 (2010) 015011 [arXiv:0905.1847] [SPIRES].

    ADS  Google Scholar 

  73. T. Moroi and L. Randall, Wino cold dark matter from anomaly-mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [SPIRES].

    Article  ADS  Google Scholar 

  74. M. Nagai and K. Nakayama, Direct/indirect detection signatures of non-thermally produced dark matter, Phys. Rev. D 78 (2008) 063540 [arXiv:0807.1634] [SPIRES].

    ADS  Google Scholar 

  75. J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [SPIRES].

    ADS  Google Scholar 

  76. P. Grajek, G. Kane, D. Phalen, A. Pierce and S. Watson, Is the PAMELA Positron Excess Winos?, Phys. Rev. D 79 (2009) 043506 [arXiv:0812.4555] [SPIRES].

    ADS  Google Scholar 

  77. G. Kane, R. Lu and S. Watson, PAMELA Satellite Data as a Signal of Non-Thermal Wino LSP Dark Matter, Phys. Lett. B 681 (2009) 151 [arXiv:0906.4765] [SPIRES].

    ADS  Google Scholar 

  78. P. Gondolo et al., DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [SPIRES].

    ADS  Google Scholar 

  79. P. Gondolo, J. Edsjö, P. Ullio, L. Bergström, M. Schelke, E.A. Baltz, T. Bringmann and G. Duda, DarkSUSY Home Page, http://www.physto.se/∼edsjo/darksusy.

  80. N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [SPIRES].

    Article  ADS  Google Scholar 

  81. E.A. Baltz, M. Battaglia, M.E. Peskin and T. Wizansky, Determination of dark matter properties at high-energy colliders, Phys. Rev. D 74 (2006) 103521 [hep-ph/0602187] [SPIRES].

    ADS  Google Scholar 

  82. S. Weinberg, T he Quantum theory of fields. Vol. 1: Foundations, Cambridge Univ. Press, Cambridge U.K. (1995).

    Google Scholar 

  83. M.E. Peskin and D.V. Schroeder, An Introduction To Quantum Field Theory, Addison-Wesley, New York U.S.A. (1995).

  84. M. Srednicki, Quantum field theory, Cambridge Univ. Press, Cambridge U.K. (2007).

    MATH  Google Scholar 

  85. P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [SPIRES].

  86. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Mason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Mason, J.D. & Randall, L. General analysis of antideuteron searches for dark matter. J. High Energ. Phys. 2010, 17 (2010). https://doi.org/10.1007/JHEP11(2010)017

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)017

Keywords

Navigation