Skip to main content
Log in

A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the Brown-York stress tensor for curvature-squared theories. This requires a generalized Gibbons-Hawking term in order to establish a well-posed variational principle, which is achieved in a universal way by reducing the number of derivatives through the introduction of an auxiliary tensor field. We examine the boundary stress tensor thus defined for the special case of ‘massive gravity’ in three dimensions, which augments the Einstein-Hilbert term by a particular curvature-squared term. It is shown that one obtains finite results for physical parameters on AdS upon adding a ‘boundary cosmological constant’ as a counterterm, which vanishes at the so-called chiral point. We derive known and new results, like the value of the central charges or the mass of black hole solutions, thereby confirming our prescription for the computation of the stress tensor. Finally, we inspect recently constructed Lifshitz vacua and a new black hole solution that is asymptotically Lifshitz, and we propose a novel and covariant counterterm for this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359 [SPIRES].

  2. W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  5. M. Rangamani, Gravity & Hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. P. Koroteev and M. Libanov, On Existence of Self-Tuning Solutions in Static Braneworlds without Singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N Effects in Non-Relativistic Gauge-Gravity Duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Ghodsi and M. Alishahiha, Non-relativistic D3-brane in the presence of higher derivative corrections, Phys. Rev. D 80 (2009) 026004 [arXiv:0901.3431] [SPIRES].

    ADS  Google Scholar 

  12. D.-W. Pang, R 2 Corrections to Asymptotically Lifshitz Spacetimes, JHEP 10 (2009) 031 [arXiv:0908.1272] [SPIRES].

    Article  ADS  Google Scholar 

  13. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. R. Andringa et al., Massive 3D Supergravity, Class. Quant. Grav. 27 (2010) 025010 [arXiv:0907.4658] [SPIRES].

    Article  ADS  Google Scholar 

  18. E.A. Bergshoeff, O. Hohm and P.K. Townsend, On Higher Derivatives in 3D Gravity and Higher Spin Gauge Theories, arXiv:0911.3061 [SPIRES].

  19. E. Bergshoeff, O. Hohm and P. Townsend, On massive gravitons in 2 + 1 dimensions, arXiv:0912.2944 [SPIRES].

  20. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz Black Hole in Three Dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [SPIRES].

    ADS  Google Scholar 

  21. J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. J.D. Brown, S.R. Lau and J.W. York, Jr., Action and Energy of the Gravitational Field, gr-qc/0010024 [SPIRES].

  23. M.S. Madsen and J.D. Barrow, de Sitter Ground States And Boundary Terms In Generalized Gravity, Nucl. Phys. B 323 (1989) 242 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. R.C. Myers, Higher Derivative Gravity, Surface Terms and String Theory, Phys. Rev. D 36 (1987) 392 [SPIRES].

    ADS  Google Scholar 

  25. D. Grumiller, R.B. Mann and R. McNees, Dirichlet boundary value problem for Chern-Simons modified gravity, Phys. Rev. D 78 (2008) 081502 [arXiv:0803.1485] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. E. Dyer and K. Hinterbichler, Boundary Terms, Variational Principles and Higher Derivative Modified Gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. A. Balcerzak and M.P. Dabrowski, Gibbons-Hawking Boundary Terms and Junction Conditions for Higher-Order Brane Gravity Models, arXiv:0804.0855 [SPIRES].

  28. S. Nojiri and S.D. Odintsov, Finite gravitational action for higher derivative and stringy gravities, Phys. Rev. D 62 (2000) 064018 [hep-th/9911152] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in deSitter and anti-deSitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [SPIRES].

    Article  ADS  Google Scholar 

  30. D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Cremonini, J.T. Liu and P. Szepietowski, Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation, JHEP 03 (2010) 042 [arXiv:0910.5159] [SPIRES].

    Article  Google Scholar 

  32. G. Clement, Warped AdS 3 black holes in new massive gravity, Class. Quant. Grav. 26 (2009) 105015 [arXiv:0902.4634] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT masive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545] [SPIRES].

    Article  ADS  Google Scholar 

  34. H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  38. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Y. Liu and Y.-W. Sun, Note on New Massive Gravity in AdS 3, JHEP 04 (2009) 106 [arXiv:0903.0536] [SPIRES].

    Article  ADS  Google Scholar 

  40. Y. Liu and Y.-W. Sun, Consistent Boundary Conditions for New Massive Gravity in AdS 3, JHEP 05 (2009) 039 [arXiv:0903.2933] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. D. Grumiller and N. Johansson, Consistent boundary conditions for cosmological topologically massive gravity at the chiral point, Int. J. Mod. Phys. D 17 (2009) 2367 [arXiv:0808.2575] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys. Lett. B 471 (2000) 358 [gr-qc/9909061] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. P. Kraus and F. Larsen, Microscopic Black Hole Entropy in Theories with Higher Derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [SPIRES].

    Article  ADS  Google Scholar 

  46. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. G. Clement, Black holes with a null Killing vector in new massive gravity in three dimensions, arXiv:0905.0553 [SPIRES].

  48. R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz Black Hole in Four Dimensional R 2 Gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [SPIRES].

    Article  ADS  Google Scholar 

  49. Y.S. Myung, Y.-W. Kim and Y.-J. Park, Dilaton gravity approach to three dimensional Lifshitz black hole, arXiv:0910.4428 [SPIRES].

  50. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [SPIRES].

    Article  Google Scholar 

  51. D. Grumiller and O. Hohm, AdS 3/LCFT 2 - Correlators in New Massive Gravity, Phys. Lett. B 686 (2010) 264 [arXiv:0911.4274] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Hohm.

Additional information

ArXiv ePrint: 1001.3598

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohm, O., Tonni, E. A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds. J. High Energ. Phys. 2010, 93 (2010). https://doi.org/10.1007/JHEP04(2010)093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)093

Keywords

Navigation