Skip to main content
Log in

Covariant representation theory of the Poincaré algebra and some of its extensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincaré algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincaré algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].

    Article  MathSciNet  Google Scholar 

  3. Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [SPIRES].

    Article  Google Scholar 

  5. S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [SPIRES].

  6. R. Boels and C. Schwinn, Toward on-shell methods for spontaneously broken gauge theories in four dimensions, in progress (2009).

  7. Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  8. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].

  10. K.G. Selivanov, An infinite set of tree amplitudes in Higgs-Yang-Mills, Phys. Lett. B 460 (1999) 116 [hep-th/9906001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. S. Dittmaier, Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1999) 016007 [hep-ph/9805445] [SPIRES].

    ADS  Google Scholar 

  12. C. Schwinn and S. Weinzierl, SUSY Ward identities for multi-gluon helicity amplitudes with massive quarks, JHEP 03 (2006) 030 [hep-th/0602012] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Pasqua and B. Zumino, Constraints and superspin for super Poincaré algebras in diverse dimensions, Phys. Rev. D 70 (2004) 066010 [hep-th/0404219] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. L.F. Abbott, Massless particles with continuous spin indices, Phys. Rev. D 13 (1976) 2291 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Cartan, The theory of spinors, M.I.T. Press, Cambridge U.S.A. (1966).

    MATH  Google Scholar 

  17. C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [SPIRES].

    Article  ADS  Google Scholar 

  18. M. Gualtieri, Generalized complex geometry, math.DG/0401221 [SPIRES].

  19. J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  20. N. Berkovits, Super-Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. L. Mason and D. Skinner, Scattering amplitudes and BCFW recursion in twistor space, arXiv:0903.2083 [SPIRES].

  22. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, arXiv:0903.2110 [SPIRES].

  23. M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S matrix, Phys. Rev. D 15 (1977) 996 [SPIRES].

    ADS  Google Scholar 

  24. S. Stieberger and T.R. Taylor, Supersymmetry relations and MHV amplitudes in superstring theory, Nucl. Phys. B 793 (2008) 83 [arXiv:0708.0574] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys. B 124 (1977) 81 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. P. Fayet, Spontaneous generation of massive multiplets and central charges in extended supersymmetric theories, Nucl. Phys. B 149 (1979) 137 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, arXiv:0808.1446 [SPIRES].

  28. V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [SPIRES].

    ADS  Google Scholar 

  29. H. Kawai, D.C. Lewellen and S.H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].

    Article  ADS  Google Scholar 

  30. R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes, JHEP 11 (2008) 015 [arXiv:0808.2598] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042 [SPIRES].

  33. N. Berkovits and S.A. Cherkis, Pure spinors are higher-dimensional twistors, JHEP 12 (2004) 049 [hep-th/0409243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. C.R. Mafra, Superstring scattering amplitudes with the pure spinor formalism, arXiv:0902.1552 [SPIRES].

  35. 35] Z. Bern, J.J.M. Carrasco, H. Ita, H. Johansson and R. Roiban, On the structure of supersymmetric sums in multi-loop unitarity cuts, Phys. Rev. D 80 (2009) 065029 [arXiv:0903.5348] [SPIRES].

    Google Scholar 

  36. F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].

    Article  ADS  Google Scholar 

  37. L. Mason and D. Skinner, Gravity, twistors and the MHV formalism, arXiv:0808.3907 [SPIRES].

  38. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger Boels.

Additional information

ArXiv ePrint: 0908.0738

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boels, R. Covariant representation theory of the Poincaré algebra and some of its extensions. J. High Energ. Phys. 2010, 10 (2010). https://doi.org/10.1007/JHEP01(2010)010

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)010

Keywords

Navigation