Skip to main content

Multifractals, Multiscaling and the Energy Cascade of Turbulence

  • Chapter
  • 173 Accesses

Part of the book series: NATO ASI Series ((ASIC,volume 349))

Abstract

The multifractal formalism [1,2], which originated in the context of turbulence and chaotic systems [3], has become a standard tool to analyze phenomena observed in fractal aggregates, semiconductors, disordered systems and so on [4]. To describe a multifractal set one usually divides it into small boxes (of size ℓ say) and introduces a partition sum of order q (or a generalized correlation function), C q(ℓ), defined as the sum over the box-probabilities, each raised to a power q. From the scaling behavior C q(ℓ) ~ ℓτ(q), the multifractal f(α) spectrum then follows from a Legendre transform of τ(q) [1,2]. To obtain the entire f(α) spectrum the moment q must vary from -∞ to +∞. Sometimes this demands very cumbersome calculations and it can be hard to obtain a good convergence of the scaling exponents. Instead by using the concept of multiscaling it is possible to obtain a part of the f(α) spectrum by calculating only one moment of the partition sum (or one correlation function). The idea of multiscaling was introduced by Kadanoff and co-workers to account for the scaling behavior of power spectra of temperature signals obtained in convective turbulence [5] and to describe distribution functions computed in simple models for sandpiles [6]. It was found that standard finite size scaling given by a few exponents did not describe the data satisfactory. Instead, by the multiscaling ansatz, the data could be nicely fitted using an infinity of scaling exponents. Recently, it was shown that it is possible to relate the concepts of multiscaling and multifractality to each other in a very natural way, namely by introducing a lower cut-off in the calculation of the correlation functions [7]. As this cut-off varies, a cross-over in the scaling of the correlation function C q(ℓ) appears at a certain length scale. Below this length scale the correlation function stops being a power law, and this cross-over point moves as the cut-off varies. Using the multiscaling idea one then rescales the various correlation curves and collapse then onto a single scaling function (apart a small correction) of which a section is given by the f(α) spectrum. Again, this means that we obtain the multifractal spectrum from calculating only one moment in the partition sum. In turbulence, this type of behavior appears very naturally, if a multifractal model is assumed [8]. Here one can relate various values of the scaling exponents to various dissipative cut-offs [4]. In order words, there will be different viscous cut-offs (for each value of the scaling exponent) occurring at different length scales as one moves below the Kolmogorov inner scale. This defines a kind of intermediate viscous regime, which again by a multiscaling transformation can be rescaled onto one curve, part of which is the singularity spectrum for turbulence [8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Frisch and G. Parisi, “Varanna School LXXXXVIII”, M. Ghil, R. Benzi, and G. Parisi, eds., North-Holland, New York (1985), p.84; R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J.Phys.A 17, 352 (1984).

    Google Scholar 

  2. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman, Phys.Rev.A 33, 1141 (1986); M.H. Jensen, L.P. Kadanoff, A. Libchaber, I. Procaccia, and J. Stavans, Phys.Rev.Lett. 55, 2798 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. B.B. Mandelbrot, J.Fluid.Mech. 62, 331 (1974).

    Article  ADS  MATH  Google Scholar 

  4. See e.g. G. Paladin and A. Vulpiani, Phys.Rep. 156, 147 (1987), and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  5. X.-Z. Wu, L.P. Kadanoff, A. Libchaber, and M. Sano, Phys.Rev.Lett. 64, 2140 (1990).

    Article  ADS  Google Scholar 

  6. L.P. Kadanoff, S.R. Nagel, L. Wu, and S.-M. Zhou, Phys.Rev.A 39, 6524 (1989).

    Article  ADS  Google Scholar 

  7. M.H. Jensen, G. Paladin and A. Vulpiani, “Mutliscaling in Multifractals”, NORDITA Preprint (1991).

    Google Scholar 

  8. U. Frisch and M. Vergassola, Europhys.Lett. 14, 439 (1991).

    Article  ADS  Google Scholar 

  9. P. Grassberger Phys. Lett. 97 A, 227 (1983); H.G.E. Hentschel and I. Procaccia. Physica 8 D, 435 (1983)

    MathSciNet  ADS  Google Scholar 

  10. P. Cvitanović, in proceedings of “XIV Colloqium on Group Theoretical Methods in Physics”, ed. R. Gilmore (World Scientific, Singapore 1987); in “Non-Linear Evolution and Chaotic Phenomena”, eds. P. Zweifel, G. Gallavotti and M. Anile (Plenum, New York, 1988).

    Google Scholar 

  11. G.H. Gunaratne and I. Procaccia, Phys.Rev.Lett. 59, 1377 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  12. M.H. Jensen, Phys.Rev.Lett. 60, 1680 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Amitrano, A. Coniglio, and F. di Liberto, Phys.Rev.Lett. 57, 1098 (1986); J. Nittmann, H.E. Stanley, E. Touboul, and G. Daccord, Phys.Rev.Lett. 58, 619 (1987); K.J. Måløy, F. Boger, J. Feder, and T. Jøssang, in “Time-Dependent Effects in Disordered Materials”, Eds. R. Pynn and T. Riste, p.111 (Plenum, New York, 1987).

    Article  Google Scholar 

  14. T. Bohr, P. Cvitanović, and M.H. Jensen, Europhys.Lett. 6, 445 (1988).

    Article  ADS  Google Scholar 

  15. J. Lee and H.E. Stanley, Phys.Rev.Lett. 61, 2945 (1988).

    Article  ADS  Google Scholar 

  16. R. Blumenfeld and A. Aharony, Phys.Rev.Lett. 62, 2977 (1989); B. Fourcade and A.M. Tremblay, Phys.Rev.Lett. 64, 1842 (1990).

    Article  ADS  Google Scholar 

  17. A general scaling approach is consistent with a scaling exponent that depends on the length instead of being a constant. This idea was originally proposed by A. Coniglio and M. Marinaro Physica 54, 261 (1971).

    Article  ADS  Google Scholar 

  18. In the context of multifractals, the multiscaling has been discussed by A. Coniglio and M. Zannetti, Physica 38 D, 37 (1989), C. Tang unpublished, and also P. Meakin, A. Coniglio, H.E. Stanley, and T.A. Witten Phys. Rev A 34, 3325 (1986).

    MathSciNet  ADS  Google Scholar 

  19. M.J. Feigenbaum, J.Stat.Phys. 19, 25 (1978); 21, 669 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. C.M. Meneveau and K.R. Sreenivasan, Nucl. Phys. B Proc.Suppl. 2, 49 (1987); C.M. Meneveau and K.R. Sreenivasan, P. Kailasnath and M.S. Fan, Phys. Rev.A 41, 894 (1990); C.M. Meneveau and K.R. Sreenivasan, Phys. Rev. Lett. 59, 1424 (1987); K.R. Sreenivasan and C.M. Meneveau, Phys. Rev. A 38, 6287 (1988).

    Article  ADS  Google Scholar 

  21. E. D. Siggia, J. Fluid Mech. 107, 375 (1981).

    Article  ADS  MATH  Google Scholar 

  22. F. Anselmet, Y. Gagne, E.J. Hopfinger and R. Antonia, J. Fluid Mech. 140, 63 (1984).

    Article  ADS  Google Scholar 

  23. I. Hosokawa and K. Yamamoto, J. Phys. Soc. of Japan 59, 401 (1990).

    Article  ADS  Google Scholar 

  24. M.H. Jensen, G. Paladin and A. Vulpiani, Phys.Rev.A 43, 798 (1991).

    Article  ADS  Google Scholar 

  25. E.B. Gledzer, Sov. Phys. Dokl. 18, 216 (1973).

    ADS  MATH  Google Scholar 

  26. E.D. Siggia, Phys. Rev.A 15, 1730 (1977); E.D. Siggia, Phys. Rev.A 17, 1166 (1978); R.M. Kerr and E.D. Siggia, J. Stat. Phys. 19, 543 (1978).

    Article  ADS  Google Scholar 

  27. R. Grappin, J. Leorat and A. Pouquet, J. Physique 47, 1127 (1986).

    Article  Google Scholar 

  28. M. Yamada and K. Ohkitani, J. Phys. Soc. of Japan 56, 4210 (1987); M. Yamada and K. Ohkitani, Progr. Theo. Phys. 79, 1265 (1988); M. Yamada and K. Ohkitani, Phys. Rev. Lett. 60, 983 (1988).

    Article  ADS  Google Scholar 

  29. K. Ohkitani and M. Yamada, Progr. Theo. Phys. 81, 329 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  30. H.A. Rose and P.L. Sulem, J. Physique 39, 441 (1978).

    MathSciNet  Google Scholar 

  31. P. Bak, private communication; K. Chen, P. Bak and M.H. Jensen, Phys.Lett.A 149, 207 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Ruelle, Comm. Math. Phys. 87, 287 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. R. Livi, M. Pettini, S. Ruffo and A. Vulpiani, J. Stat. Phys. 48, 530 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  34. M.H. Jensen, G. Paladin and A. Vulpiani, to be published (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jensen, M.H. (1991). Multifractals, Multiscaling and the Energy Cascade of Turbulence. In: Riste, T., Sherrington, D. (eds) Spontaneous Formation of Space-Time Structures and Criticality. NATO ASI Series, vol 349. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3508-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3508-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5551-2

  • Online ISBN: 978-94-011-3508-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics