Skip to main content

Abstract

Modified purine and pyrimidine bases which constitute one of the major classes of oxidative DNA damage are likely to be involved in mutagenesis and carcinogenesis and possibly in aging. In the present survey, the currently available information on the structural aspects of oxidized DNA bases and their mechanism of formation are critically reviewed. A survey of the main approaches (HPLC separations associated with various spectroscopic detections, gas chromatography-mass spectrometry, postlabeling techniques, immunoassays…) involving either initial acid hydrolysis or enzymatic digestion of DNA which were recently developed for monitoring the formation of oxidative DNA base damage in cells, tissues and biological fluids is also presented. The measurement of the above compounds in biological fluids such as urine may be used for assessing oxidative damage to DNA [5]. Other important sources of oxidation processes are provided by physical agents (ionizing radiation, near-ultraviolet/visible light [6,7]). In the latter case, oxidation of DNA would require the presence of endogenous or exogenous photosensitizers including flavins and porphyrins. In this short survey emphasis has been placed on the oxidation reactions of the guanine moiety of DNA and model compounds as the result of one-electron processes and exposure to oxidizing agents including hydroxyl radicals and singlet oxygen. However, it should be mentioned that relevant information on oxidation reactions of adenine, cytosine and thymine, the other DNA bases is available [see for example, 6–10].

To whom correspondence may be addressed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames B.N., Gold L.S. “Endogenous mutagens and the cause of aging and cancer”, Mutat. Res, 250, 3–16 (1991).

    CAS  Google Scholar 

  2. Sies H., ed. Oxidative Stress, “Oxidants and Antioxidants”, New York, Academic Press Inc., (1991).

    Google Scholar 

  3. Lindahl T. “Instability and decay of the primary structure of DNA”, Nature, 362, 709–715 (1993).

    Article  CAS  Google Scholar 

  4. Srinivasan S., Glauert H.P. “Formation of 5-hydroxymethyl-2’-deoxyuridine in hepatic DNA of rats treated with gamma-irradiation, diethylnitrosamine, 2-acetylaminofluorene or the peroxisome proliferator ciprofibrate”, Carcinogenesis, 11, 2012–2024 (1990).

    Article  Google Scholar 

  5. Shinenaga M.K., Gimeno C.L., Ames B.N. “Urinary 8-hydroxy-2’-deoxyguanosine as a biological marker of in vivo oxidative DNA damage”, Proc. Natl. Acad. Sci. USA, 86, 9697–9701 (1989).

    Article  Google Scholar 

  6. von Sonntag C. ed. “The Chemical Basis of Radiation Biology”, London: Taylor Francis, (1987).

    Google Scholar 

  7. Cadet J., Vigny P. “The photochemistry of nucleic acids”, In: Morrison H, ed. Bioorganic Photochemistry, Vol. 1, New York: Wiley and Sons, 1–272 (1990).

    Google Scholar 

  8. Wagner J.R., van Lier J.E., Decarroz C., Berger M., Cadet J. “Photodynamic methods for oxy radical-induced DNA damage”, Methods Enzym, 186, 502–511 (1990).

    Article  CAS  Google Scholar 

  9. Wagner J.R., van Lier J.E., Berger M., Cadet J. “Thymidine hydroperoxides: Structural assignment, conformational features, and thermal decomposition in water”, J. Am. Chem. Soc, 116, 2235–2242 (1994).

    Article  CAS  Google Scholar 

  10. Cadet J. “DNA damage caused by oxidation, deamination, ultraviolet radiation and photoexcited psoralens”, In: Hemminki K et al, eds. DNA adducts: Identification and biological significance, Lyon: International Agency for Research on Cancer, IARC Scientific Publications, 125, 245–276 (1994).

    Google Scholar 

  11. Cadet J., Berger M., Buchko G.W., Joshi P.C., Raoul S., Ravanat J.L. “2,2-Diamino-4-[(3,5-di-O-acetyl-2-deoxy-ß-D-erythro-pentofuranosyl)amino]-5-(2H)-oxaz olone: A novel and predominant radical oxidation product of 3′,5′-di-O-acetyl-2′-deoxyguanosine”, J. Am. Chem. Soc, 116, 7403–7404 (1994).

    Article  CAS  Google Scholar 

  12. Morin B Cadet J . “Benzophenone photosensitisation of 2′-deoxyguanosine: Characterization of the 2R and 2S diastereoisomers of l-(2-deoxy-ß-D-erythro-pentofuranosyl) -2-methoxy-4, 5-imidazolidinedione. A model system for the investigation of photosensitized formation of DNA-protein crosslinks”, Photochem. Photobiol., 60, 102–109 (1994).

    Article  CAS  Google Scholar 

  13. Kasai H., Yamaizumi Z., Berger M., Cadet J. “Photosensitized formation of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-hydroxy-2′-deoxyguanosine) in DNA by riboflavin: a non singlet oxygen mediated reaction”, J. Am. Chem. Soc, 114, 9692–9694 (1992).

    Article  CAS  Google Scholar 

  14. Berger M., de Hazen M., Nejjari A., Fournier J., Guignard J., Pezerat H., Cadet J. “Radical oxidation reactions of the purine moiety of 2′-deoxyribo-nucleosides and DNA by iron-containing minerals”, Carcinogenesis, 14, 41–46 (1993).

    Article  CAS  Google Scholar 

  15. Cadet J., Berger M., Buchko G.W., Incardona M.F., Morin B., Raoul S., Ravanat J.L. “DNA oxidation: Characterization of the damage and mechanistic aspects”, In: R. Paoletti et al. Oxidative Processes and Antioxidants, New York: Raven Press, 97–115 (1994).

    Google Scholar 

  16. Buchko G.W., Cadet J., Berger M., Ravanat J.L. “Photooxidation of d(TpG) by phthalocyanines and riboflavin. Isolation and characterization of dinucleoside monophosphates containing the 4R* and the 4S* diastereoisomers of 4,8-dihydro-4-hydroxy-8-oxo-2′-deoxyguanosine”, Nucleic. Acids Res., 20, 4847–4851 (1992).

    Article  CAS  Google Scholar 

  17. Cadet J., Ravanat J.L., Buchko G.W., Yeo H.C., Ames B.N. “Singlet oxygen DNA damage: Chromatographic and mass spectrometric analysis of damage products”, Methods Enzym, 234, 79–88 (1994).

    Article  CAS  Google Scholar 

  18. Cadet J., Weinfeld M. “Detecting DNA damage”, Anal Chem, 65, 675A–682A (1993).

    Article  CAS  Google Scholar 

  19. Frenkel K, Klein C.B. Methods used for analyses of environmentally damaged nucleic acids, J. Chromatogr., 618, 289–314 (1993).

    Article  CAS  Google Scholar 

  20. Mouret J.F., Odin F., Polverelli M., Cadet J. “32P-Postlabeling measurement of adenine N-l-oxide in cellular DNA exposed to hydrogen peroxide”, Chem. Res. Toxicol., 3, 102–110 (1990).

    Article  CAS  Google Scholar 

  21. Cadet J., Odin F., Mouret J.F., Polverelli M., Audic A., Giacomoni P., Favier A., Richard M.J. “Chemical and biochemical postlabeling methods for singling out specific oxidative DNA lesions”, Mutat. Res., 275, 343–354 (1992).

    CAS  Google Scholar 

  22. Shigenaga M.K., Aboujaoude E.N., Chen Q., Ames B.N. “Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high performance liquid chromatography with electrochemical detection”, Methods Enzym., 234, 16–33 (1994).

    Article  CAS  Google Scholar 

  23. Faure H., Incardona M.F., Boujet C., Cadet J., Ducros V., Favier A. “Gas chromato- graphic-mass spectrometric determination of 5-hydroxymethyluracil in human urine by stable isotope dilution”, J. Chromatogr. Biom. Appl., 616, 1–7 (1993).

    Article  CAS  Google Scholar 

  24. Boiteux S. “Properties and biological functions of the NTH and FPG proteins of Escherichia coli: two glycosylases that repair oxidative damage in DNA”, J. Photochem. Photobiol. B: Biol., 19, 87–96 (1993).

    Article  CAS  Google Scholar 

  25. Hatahet Z., Kow Y.W., Purmal A.A., Cunningham R.P., Wallace S.S. “New substrates from old enzymes”, J. Biol. Chem., 269, 11814–18820 (1994).

    Google Scholar 

  26. Tchou J., Bodepudi V., Shibutani S., Antoshechkin I., Miller J., Grollman A.P., Johnson F. “Substrate specificity of Fpg protein”, J. Biol. Chem., 269, 15318–15324 (1994).

    CAS  Google Scholar 

  27. Guy A., Duplaa A.M., Ulrich J., Teoule R. “Incorporation by chemical synthesis and characterization of deoxyribosylformylamine into DNA”, Nucleic. Acids Res., 19, 5815–5820 (1991).

    Article  CAS  Google Scholar 

  28. Grollman A.P., Moriya M. “Mutagenesis by 8-oxoguanine: an enemy within”, Trends Genet, 9, 246–249 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cadet, J. et al. (1997). DNA Modifications Due to Oxidative Damage. In: Bardinet, C., Royer, JJ. (eds) Geosciences and Water Resources: Environmental Data Modeling . Data and Knowledge in a Changing World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60627-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60627-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64483-2

  • Online ISBN: 978-3-642-60627-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics