Skip to main content

Leaf Development

  • Chapter
Development

Abstract

Unlike the case in animals, developmental programs of plants cannot use cell migration during embryogenesis. In fact, every time a cell divides, it lays down a lignified wall which is firmly anchored to walls of preexisting cells. This imposes several restrictions on organ and tissue development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell AD (1991) Plant form. Oxford University Press, London

    Google Scholar 

  2. Bossinger G, Lundqvist U, Rohde W, Salamini F (1992) Genetics of plant development in barley. In: Munck L (ed) Barley Genetics VI. Proc of the 6th Int. Barley Gen Symp 1991, Helsingborg, Sweden. Munksgaard Int Publ, Copenhagen, Denmark, pp 989–1022

    Google Scholar 

  3. Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831

    Google Scholar 

  4. Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge UK

    Book  Google Scholar 

  5. Yang C-H, Cheng L-J, Sung RZ (1995) Genetic regulation of shoot development in Arabidopsis: role of the EMF genes. Dev Biol 169:421–435

    Article  PubMed  CAS  Google Scholar 

  6. Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77:515–527

    Article  Google Scholar 

  7. Hall LN, Langdale JA (1996) Tansley review, no 88 Molecular genetics of cellular differentiation in leaves. New Phytol 132:533–553

    Article  CAS  Google Scholar 

  8. Poethig RS (1997) Leaf morphogenesis in flowering plants. Plant Cell 9:1077–1087

    Article  PubMed  CAS  Google Scholar 

  9. Cerioli S, Marocco A, Maddaloni M, Motto M, Salamini F (1994) Early event in maize leaf epidermis formation as revealed by cell lineage studies. Development 120: 2113–2120

    Google Scholar 

  10. Christianson ML (1986) Fate map of the organizing shoot apex of Gossypium. Am J Bot 73: 947–958

    Article  Google Scholar 

  11. Poethig RS, Szymkowiak EJ (1995) Clonal analysis of leaf development in maize. Maydica 40:67–76

    Google Scholar 

  12. Scanlon MJ, Schneeberger RG, Freeling M (1996) The maize narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122: 1683–1691

    PubMed  CAS  Google Scholar 

  13. Scanlon MJ, Freeling M (1998) The narrow sheath leaf domain deletion: a genetic tool used to reveal developmental homologies among modified maize organs. Plant J 13:547–561

    CAS  Google Scholar 

  14. Sharman BC (1942) Developmental anatomy of the shoot of Zea mays L. Ann Bot NS 6:245–282

    Google Scholar 

  15. Becraft PW, Freeling M (1991) Sectors of liguleless-1 tissue interrupt an inductive signal during maize leaf development. Plant Cell 3:801–807

    Article  PubMed  CAS  Google Scholar 

  16. Fowler JE, Freeling M (1996) Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Dev Gen 18:198–222

    Article  CAS  Google Scholar 

  17. Freeling M (1992) A conceptual framework for maize leaf development. Dev Biol 153:44–58

    Article  PubMed  CAS  Google Scholar 

  18. Langdale JA, Lane B, Freeling M, Nelson T (1989) Cell lineage analysis of maize bundle sheath and mesophyll cells. Dev Biol 133:128–139

    Article  PubMed  CAS  Google Scholar 

  19. Sylvester AW, Smith L, Freeling M (1996) Acquisition of identity in the developing leaf. Annu Rev Cell Dev Biol 12:257–304

    Article  PubMed  CAS  Google Scholar 

  20. Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9:1121–1135

    Article  PubMed  CAS  Google Scholar 

  21. Smith LG (1996) What is the role of cell division in leaf development. Cell Dev Biol 7:839–848

    Article  Google Scholar 

  22. Bugnon F, Dulieu H, Turlier MF (1969) Rapports entre les directions fondamentales de croissance dans Febauche et la nervation foliaires. CR Acad Sci Paris 268:48–50

    Google Scholar 

  23. Dawe RK, Freeling M (1991) Cell lineage and its consequences in higher plants. Plant J 1:3–8

    Article  Google Scholar 

  24. McHale NA (1993) LAM-1 and FAT genes control development of the leaf blade in Nicotiana sylvestris. Plant Cell 5:1029–1038

    Article  PubMed  Google Scholar 

  25. Poethig RS, Sussex IM (1985) The developmental morphology and growth dynamics of the tobacco leaf. Planta 165: 158–169

    Article  Google Scholar 

  26. Spena A, Salamini F (1995) Genetic tagging of cells and cell layer for studies of plant development. In: Methods in cell biology, vol 49. Academic Press, New York, pp 331–354

    Google Scholar 

  27. Tsukaya H (1995) Developmental genetics of leaf morphogenesis in dicotyledonous plants. J Plant Res 108:407–416

    Article  Google Scholar 

  28. Timmermans MCP, Schultes NP, Jankovsky JP, Nelson T (1998) Leafbladeless 1 is required for dorsoventrality of lateral organs in maize. Development 125:2813–2823

    PubMed  CAS  Google Scholar 

  29. Waites R, Hudson A (1995) Phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  30. Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122:1589–1600

    PubMed  CAS  Google Scholar 

  31. Charlton WA (1988) Stomatal pattern in four species of monocotyledons. Ann Bot 61:611–621

    Google Scholar 

  32. Croxdale J, Smith J, Yandell B, Johnson B (1992) Stomatal patterning in Tradescantia: evaluation of the cell lineage theory. Dev Biol 149:158–167

    Article  PubMed  CAS  Google Scholar 

  33. Larkin JC, Marks MD, Nadeau J, Sack F (1997) Epidermal cell fate and patterning in leaves. Plant Cell 9: 1109–1120

    Article  PubMed  CAS  Google Scholar 

  34. Marks MD (1997) Molecular genetic analysis of trichome development in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48:137–163

    Article  PubMed  CAS  Google Scholar 

  35. Yang M, Sack F (1995) The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7:2227–2239

    Article  PubMed  CAS  Google Scholar 

  36. Chuck G, Lincoln C, Hake S (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8: 1277–1289

    Article  PubMed  CAS  Google Scholar 

  37. Hake S, Char BR, Chuck G, Foster T, Long J, Jackson D (1995) Homeobox genes in the functioning of plant meristems. Philos Trans R Soc Lond 350:45–51

    Article  CAS  Google Scholar 

  38. Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED 1-related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  39. Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knottedl-like homeobox genes into two classes. Plant Cell 6:1877–1887

    Article  PubMed  CAS  Google Scholar 

  40. Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED 1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  PubMed  CAS  Google Scholar 

  41. Muller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730

    Article  PubMed  CAS  Google Scholar 

  42. Vollbrecht E, Kerstetter R, Lowe B, Veit B, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  PubMed  CAS  Google Scholar 

  43. William-Carrier RE, Lie YS, Hake S, Lemaux PG (1997) Ectopic expression of the maize knl gene phenocopies the Hooded mutant of barley. Development 124:3737–3745

    Google Scholar 

  44. Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene knottedl are defective in shoot meristem maintenance. Development 124:3045–3054

    PubMed  CAS  Google Scholar 

  45. Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  PubMed  CAS  Google Scholar 

  46. Parnis A, Cohen O, Gutfinger T, Hareven D, Zamir D, Lifschitz E (1997) The dominant developmental mutants of t omato, Mouse-ear and Cwr/, are associated with distinct modes of abnormal transcriptional regulation of a Knotted gene. Plant Cell 9:2143–2158

    Article  PubMed  CAS  Google Scholar 

  47. Sinha N (1997) Simple and compound leaves: reduction or multiplication? Trends Plant Sci 2:396–401

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Pozzi, C., Müller, K.J., Rohde, W., Salamini, F. (1999). Leaf Development. In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics