Skip to main content

On Strong Stability and Stabilizability of Linear Systems of Neutral Type

  • Conference paper
Advances in Time-Delay Systems

Abstract

For linear stationary systems, the infinite dimensional framework allows one to distinguish different notions of stability: weak, strong or exponential. The purpose of this chapler is to investigate the problem of strong stability, i.e. asymptotic non-exponential stability for linear systems of neutral type in order to use this characterization in the study of the stabilizability problem for this type of systems. An important tool in this investigation is the Riesz basis property of generalized eigenspaces of the neutral system, because that the generalized eigenvectors do not form, in general, a Riesz basis. This allows one to describe more precisely asymptotic non-exponential stability of neutral systems. For a particular case, conditions of strong stabilizability of neutral type systems are given with a feedback law without derivative of the delayed state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhiezer N. I., Glazman I. M. (1993) Theory of linear operators in Hilber1 space. Translated from the Russian and with a preface by Merlynd Nestell. Reprint of the 1961 and 1963 translations. Two volumes. Dover Publications New York. Theory of linear operators in Hilbcn space. Vol. I, II. Transl. from the 3rd Russian ed. Monographs and Studies in Mathematics, 9, 10. Edinburgh. Boston-London-Melbourne Pitman Advanced Publishing Program. XXXII, 552 p.

    Google Scholar 

  2. Arendt W., Bally C. J. (1988) Tauberian theorems and stability of one-parameter semi-grouos. Trans. Amer. Math. Soc. 306: 837–852

    MATH  Google Scholar 

  3. Batty C. J., Phong V. Q. (1990) Stability of individual elements under one-parameter semigroups. Trans. Amer. Math. Soc. 322: 805–818.

    MATH  Google Scholar 

  4. Brumley W. E. (1970) On the asymptotic behavior of solutions of differential-difference equations of neutral type. J. Differential Equations 7, 175–188.

    MathSciNet  MATH  Google Scholar 

  5. Cunain R. F., Zwart H. (1995) An introduction to infinite-dimensional linear systems theory. Springer-Verlag New York.

    Google Scholar 

  6. Dickmann O, van Gils S, Verduyn Lunel S. M., Walther H-O (1995) Delay cquations. Functional, complex, and nonlinear analysis. Applied Mathematical Sciences, 110. Springer-Verlag New York.

    Google Scholar 

  7. Gohberg I. C., Krein M. G. (1969) Introduction to the theory of linear nonselfadjoint operators (English) Translations of Mathematical Monographs. 18. Providence, RI AMS, XV, 378 p.

    Google Scholar 

  8. Hale J., Verduyn Lunel S. M. (1993) Theory of functional differential equations. Springer-Verlag New York.

    Google Scholar 

  9. Kato T (1980) Perturbation theory for linear operators. Springer Verlag.

    Google Scholar 

  10. Kolmanovskii V, Myshkis A (1999) Introduction to the theory and applications of functional differential equations., Mathematics and its Applications (Dordrecht). 463. Dordrecht Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  11. Korobov V. I., Sklyar G. M. (1984) Strong stabilizability of contrnctive systems in Hilbert space. Differentsial’nye Uravn. 20: 1862–1869.

    MathSciNet  Google Scholar 

  12. Krabs W., Sklyar G. M. (2002) On Controllability of Linear Vibrations. Nova Science Publ. Huntigton, N. Y.

    Google Scholar 

  13. Levan N., Rigby I. (1979) Strong stabilizability of linear contractive systems in Banach space. SIAM J. Control, 17: 23–35.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lyubich Yu. I., Phong V. Q. (1988) Asymptotic stability of linear differential equation in Banach space. Studia Math. 88:37–42.

    MATH  Google Scholar 

  15. O’Connor D. A, Tam T. J. (1983) On stabilization by state feedback for neutral differential equations. IEEE Transactions on Automatic Control. Vol. AC-28n. 5, 615–618.

    Article  Google Scholar 

  16. Oostvenn J (1999) Strongly stabilizable infinite dimensional systems. Ph.D. Thesis. University of Groningen.

    Google Scholar 

  17. Pandolfi L. (1976) Stabilization of neutral functional differential equations. J. Optimization Theory and Appl. 20n. 2, 191–204.

    MathSciNet  MATH  Google Scholar 

  18. Rabah R., Sklyar G. M., On a class of strongly stabilizable systems of neutral type, (submitted).

    Google Scholar 

  19. Rabah R., Sklyar G. M., and Rezounenko A. V (2003) Generalized Riesz basis property in the analysis of neutral type systems, Comptes Rendus de l’ Académie des Sciences, Série Mathématiques. To appear. (See also the extended version, Preprint RI02-10, IRCCyN, Names, France).

    Google Scholar 

  20. Sklyar G.M., Shirmao V.Ya. (1982) On Asymptotic Stability of Linear Differential Equation in Banach Space. Teor, Funk., Funkt. Analiz. Prilozh. 37: 127–132

    MATH  Google Scholar 

  21. Sklyar G, Rezounenko A. (2001) A theorem on the strong asymptotic stability and determination of stabilizing control. C.R.Acad. Sci. Paris, Ser. I. 333:807–812.

    MathSciNet  MATH  Google Scholar 

  22. Slemrod M (1973) A note on complcte controllability and stabilizability for linear control systems in Hilbert space. SIAM J. Control 12:500–508.

    Article  MathSciNet  Google Scholar 

  23. Sz.-Nagy, B., Foias, C. (1970) Harmonic Analysis of Operators on Hilbert Space. Budapest: Akadémiai Kiadó; Amsterdam-London North-Holland Publishing Company. XIII, 387 p.

    Google Scholar 

  24. van Neerven J. (1996) The asymptotic behaviour of scmigroups of linear operators, in “Operator Theory: Advances and Applications”, Vol. 88. BaselBirkhause

    Google Scholar 

  25. Yamamoto Y, Ueshima S (1986) A new model for neutral delay-differential systems. Internal. J. Control 43(2):46S–471.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rabah, R., Sklyar, G.M., Rezounenko, A.V. (2004). On Strong Stability and Stabilizability of Linear Systems of Neutral Type. In: Niculescu, SI., Gu, K. (eds) Advances in Time-Delay Systems. Lecture Notes in Computational Science and Engineering, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18482-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18482-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20890-7

  • Online ISBN: 978-3-642-18482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics