Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 55))

Abstract

Ultra Wide Band (UWB) technology has been developed in the last years in the framework of short-range low data rate communications. Due to the wide channels bandwidth and low power characteristics it provides a very different approach to wireless technologies compared to conventional narrow band systems. This makes it interesting in medicine area with many potential applications. In this chapter, the discussion is focused on the application of this technology in medical monitoring, and Wireless Body Area Networks.

UWB signals are moreover naturally suited for accurate estimation of the distance between two radios even in severe multipath or non-line-of-sight scenarios, virtually enabling indoor position sensing with an accuracy of 50 cm or better. This features can be exploited to realize a patient motion monitoring system in hospital.

Moreover, one of the key advantages of UWB in this context is its potential for the development of ultra low power consumption radio chipsets, resulting in significantly increased battery lifetimes for sensor nodes spread in the environment or even autonomous operations from waste energy. The recently developed IEEE 802.15.4a standard is capitalizing on these two advantages of UWB, and it is expected to enable the combination of accurate position sensing and ultra low power communications in one single system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McEwan, T.: Body monitoring and imaging apparatus and method. United States Patent 5,766,208 (June 16, 1998)

    Google Scholar 

  2. McEwan, T.: Body monitoring and imaging apparatus and method. United States Patent 5,573,012 (November 12, 1996)

    Google Scholar 

  3. Gezici, S., Tian, Z., Giannakis, G.B., Kobayashi, H., Molisch, A.F., Vincent Poor, H., Sahinoglu, Z.: Localization via Ultra-Wideband Radios. IEEE Signal Processing Magazine, 70–84 (July 2005)

    Google Scholar 

  4. Kanso, M.A., Rabbat, M.G.: Efficient Detection and Localization of Assets in Emergency Situations. In: 3rd International Symposium on Medical Information and Communication Technology (ISMICT 2008), Montreal, Canada (2008)

    Google Scholar 

  5. Labeau, F., Tchana, A.B., Le-Ngoc, T.: Enabling Context Aware Clinical Applications through Ultra-Wideband Localization. In: 3rd International Symposium on Medical Information and Communication Technology (ISMICT 2008), Montreal, Canada (2008)

    Google Scholar 

  6. Kawasaki, M., Kohno, R.: A TOA based Positioning Technique of Medical Implanted Devices. In: 3rd International Symposium on Medical Information and Communication Technology (ISMICT 2008), Montreal, Canada (2008)

    Google Scholar 

  7. Steele, B.G., Belza, B., Cain, K., Warms, C., Coppersmith, J., Howard, J.: Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. Journal of Rehabilitation Research & Development 40(5) (suppl. 2), 45–58 (2003)

    Google Scholar 

  8. Jovanov, E., Milenkovi, A., Otto, C., De Groen, P., Johnson, B., Warren, S., Taibi, G.: A WBAN System for Ambulatory Monitoring of Physical Activity and Health Status: Applications and Challenges. In this Proceedings

    Google Scholar 

  9. Verhelst, M., Dehaene, W.: System design of an ultra-low-power, low data rate, pulsed UWB receiver in the 0-960 MHz band. In: Proc. IEEE Int. Conf. Communications, Seoul, Korea, May 2005, vol. 4, pp. 2812–2817 (2005)

    Google Scholar 

  10. O’Donnell, D., Chen, M.S.W., Wang, S.B.T., Brodersen, R.W.: An integrated, low-power, ultra-wideband transceiver architecture for low-rate indoor wireless system. Presented at IEEE CAS Workshop Wireless Commun. Networking, Pasadena, CA (September 2002)

    Google Scholar 

  11. Ryckaert, J., Desset, C., Fort, A., Badaroglu, M., De Heyn, V., Wambacq, P., Van der Plas, G., Donnay, S., Van Poucke, B., Gyselinckx, B.: Ultra-wide band transmitter for low-power wireless body area networks: Design and evaluation. IEEE Trans. Circuits Syst. I, Reg. Papers 52(12), 2515–2525 (2005)

    Article  Google Scholar 

  12. Terada, T., Yoshizumi, S., Muqsith, M., Sanada, Y., Kuroda, T.: A CMOS ultra-wideband impulse radio transceiver for 1-Mb/s data communications and _2.5-cm range finding. IEEE J. Solid-State Circuits 41(4), 891–897 (2006)

    Article  Google Scholar 

  13. Tamtrakarn, A., Ishikuro, H., Ishida, K., Takamiya, M., Sakurai, T.: A 1-V 299_W flashing UWB transceiver based on double thresholding scheme. In: 2006 Symp. VLSI Circuits Dig. Tech. Papers., Honolulu, HI, June 2006, pp. 202–203 (2006)

    Google Scholar 

  14. O’Donnell, I.D., Brodersen, R.: A 2.3mW baseband impulse-UWB transceiver front-end in CMOS. In: 2006 Symp. VLSI Circuits Dig. Tech. Papers, Honolulu, HI (June 2006)

    Google Scholar 

  15. IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a (TG4a), IEEE 802.15.4 Std., http://www.ieee802.org/15/pub/TG4a.html , http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf

  16. Ryckaert, J., Badaroglu, M., De Heyn, V., Van der Plas, G., Nuzzo, P., Baschirotto, D’Amico, S., Desset, C., Suys, H., Libois, M., Van Poucke, B., Wambacq, P., Gyselinckx, B.: A 16mA UWB 3-to-5GHz 20Mpulses/s quadrature analog correlation receiver in 0.18um CMOS. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, February 2006, pp. 368–377 (2006)

    Google Scholar 

  17. Win, M.Z., Scholtz, R.A.: Impulse radio: How it works. IEEE Commun. Lett. 2(2), 36–38 (1998)

    Article  Google Scholar 

  18. Ammer, J.: Low power synchronization for wireless communication. Ph.D. dissertation, Univ. California, Berkeley, CA (2004); [11] Lee, F., Chandrakasan, A.: A BiCMOS ultra-wideband 3.1–10.6-GHz front-end. IEEE J. Solid-State Circuits 41(8), 1784–1791 (2006)

    Google Scholar 

  19. Yang, C., Chen, K., Chiueh, T.: A 1.2V 6.7mW impulse-radio UWB baseband transceiver. In: IEEE ISSCC 2005 Dig. Tech. Papers, San Francisco, CA, vol. 1, pp. 442–608 (2005)

    Google Scholar 

  20. Verhelst, M., Dehaene, W.: Complex analog pulsed UWB-receiver in realistic 0–1 GHz channels. Presented at the 1st IEEE Australian Conf. Wireless Broadband and Ultra Wideband Communications (AusWireless 2006), Sydney, Australia (March 2006)

    Google Scholar 

  21. Hoctor, R., Tomlinson, H.: Delay-hopped transmitted-reference RF communications. In: Proc. 2002 IEEE Conf. Ultra Wideband Systems and Technologies, Baltimore, MD, May 2002, pp. 265–269 (2002)

    Google Scholar 

  22. Bagga, S., Zhang, L., Serdijn, W., Long, J., Busking, E.: A quantized analog delay for an IR-UWB quadrature downconversion autocorrelation receiver. In: Proc. 2005 IEEE Int. Conf. Ultra-Wideband, Zurich, Switzerland, September 2005, pp. 328–332 (2005)

    Google Scholar 

  23. Cusmai, G., Brandolini, M., Rossi, P., Svelto, F.: An interference robust 0.18 um CMOS 3.1–8 GHz receiver front-end for UWB radio. In: Proc. IEEE Custom Integrated Circuits Conf. (CICC 2005), September 2005, pp. 157–160 (2005)

    Google Scholar 

  24. O’Donnell, I., Brodersen, R.: An ultra-wideband transceiver architecture for low power, low rate, wireless systems. IEEE Trans. Veh. Technol. 54(5), 1623–1631 (2005)

    Article  Google Scholar 

  25. Pellerano, S., Levantino, S., Samori, C., Lacaita, A.L.: A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic frequency divider. IEEE J. Solid-State Circuits 39(2), 378–383 (2004)

    Article  Google Scholar 

  26. Channel modeling sub-committee final report IEEE 802.15.sg3a, IEEE 802.15-02/490rl-SG3a (February 2003)

    Google Scholar 

  27. Razavi, B., et al.: A UWB CMOS transceiver. IEEE J. Solid-State Circuits 40(12), 2555–2562 (2005)

    Article  Google Scholar 

  28. Raha, P.: A 0.6-4.2V low-power configurable PLL architecture for 6 GHz-300 MHz applications in a 90 nm CMOS process. In: 2004 Symp. VLSI Circuits Dig. Tech. Papers, Honolulu, HI, June 2004, pp. 232–235 (2004)

    Google Scholar 

  29. Ginsburg, B., Chandrakasan, A.: Dual scalable 500mS/s, 5b timeinterleaved SAR ADCs for UWB applications. In: Proc. IEEE 2005 Custom Integrated Circuits Conf., San Jose, CA, pp. 403–406 (2005)

    Google Scholar 

  30. Blazquez, R., Newaskar, P., Lee, F., Chandrakasan, A.: A baseband processor for impulse ultra-wideband communications. IEEE J. Solid-State Circuits 40(9), 1821–1828 (2005)

    Article  Google Scholar 

  31. Roovers, R., Leenaerts, D.M.W., Bergervoet, J., Harish, K.S., van de Beek, R.C.H., van der Weide, G., Waite, H., Yifeng, Z., Aggarwal, S., Razzel: An interference-robust receiver for ultra-wideband radio in SiGe BiCMOS technology. IEEE J. Solid-State Circuits 40(12), 2563–2572 (2005)

    Article  Google Scholar 

  32. Sjoland, H., Karim-Sanjaani, A., Abidi, A.: A merged CMOS LNA and MIXER for aWCDMAreceiver. IEEE J. Solid-State Circuits 38(6), 1045–1050 (2003)

    Article  Google Scholar 

  33. D’Amico, S., Ryckaert, J., Baschirotto, A.: A up-to-1 GHz lowpower baseband chain for UWB receivers. In: Proc. Eur. Solid-State Circuits Conf. (ESSCIRC 2006), September 2006, pp. 263–266 (2006)

    Google Scholar 

  34. Nuzzo, P., Van der Plas, G., De Bernardinis, F., Van der Perre, L., Gyselinckx, B., Terreni, P.: A 106mW/0.8pJ power-scalable 1 GS/s 4b ADC in 0.18_m CMOS with 5.8GHz ERBW. In: Proc. 43rd ACM/IEEE Design Automation Conf., San Francisco, CA, pp. 873–878 (2006)

    Google Scholar 

  35. Kobayashi, T., Nogami, K., Shirotori, T., Fujimoto, Y.: A currentcontrolled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE J. Solid-State Circuits 28(4), 523–527 (1993)

    Article  Google Scholar 

  36. Lee, M.E., Dally, W., Chiang, P.: A 90 mW 4 Gb/s equalized I/O circuit with input offset cancellation. In: IEEE ISSCC 2000 Dig. Tech. Papers, 2000, pp. 252–253, 463 (2000)

    Google Scholar 

  37. Desset, C., Badaroglu, M., Ryckaert, J., Van Poucke, B.: UWB search strategies for minimal-length preamble and a low-complexity analog receiver. In: Proc. IEEE 7th Workshop Signal Processing Advances in Wireless Communications (SPAWC 2006), Cannes, France, July 2006, pp. 1–5 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Amico, S. et al. (2010). Ultra Wide Band in Medical Applications. In: Mukhopadhyay, S.C., Lay-Ekuakille, A. (eds) Advances in Biomedical Sensing, Measurements, Instrumentation and Systems. Lecture Notes in Electrical Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05167-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05167-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05166-1

  • Online ISBN: 978-3-642-05167-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics