Skip to main content

Biogeochemical changes induced by uranyl nitrate in a uranium waste pile

  • Chapter

Abstract

Treatments with uranyl nitrate induced strong changes in a subsurface bacterial community of a uranium mining waste pile. Most of the bacterial populations, stimulated at the initial stages of the treatment, were affiliated with species able to use the added nitrate for respiration. Mössbauer spectroscopic analysis showed that at the later incubation stages, when nitrate was reduced, reduction of Fe(III) to Fe(II) occurred. Time-resolved laser-induced fluorescence spectroscopic (TRLFS) analysis revealed that most of the added U(VI) was bound in organic and inorganic phosphate phases both of biotic origin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akob DM, Mills HJ, Kostka JE (2007) Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol 59:95–107

    Article  Google Scholar 

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long P E, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  Google Scholar 

  • Bounhoure I, Meca S, Marti V, De Pablo J, Cortina JL (2007) A new time-resolved laser-induced fluorescence spectroscopy (TRLFS) data acquisition procedure applied to the uranyl-phosphate system. Radiochim Acta 95:165–172

    Article  Google Scholar 

  • Brand RA (1987) Improving the validity of hyperfine field distributions from magnetic alloys .1. unpolarized source. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 28:398–416.

    Article  Google Scholar 

  • Cummings DE, Caccavo Jr F, Spring S, Rosenzweig RF (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188

    Article  Google Scholar 

  • Dobbin PS, Carter JP, San Juan CGS, von Hobe M, Powell AK, Richardson DJ (1999) Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol Lett 176:131–138

    Article  Google Scholar 

  • Finneran KT, Housewright ME, Lovley DR (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516

    Article  Google Scholar 

  • Finneran KT, Johnsen CV, Lovley DR (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673

    Article  Google Scholar 

  • Francis AJ, Dodge CJ, Lu F, Halada GP, Clayton CR (1994) XPS and XANES studies of uranium reduction by Clostridium sp. Environ Sci Technol 28:636–639

    Article  Google Scholar 

  • Geipel G, Bernhard G, Rutsch M, Brendler V, Nitsche H (2000) Spectroscopic properties of uranium(VI) minerals studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 88:757–762

    Article  Google Scholar 

  • Geissler A, Selenska-Pobell S (2005) Addition of U(VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community. Geobiology 3:275–285

    Article  Google Scholar 

  • Geissler A, Scheinost AC, Selenska-Pobell S (2005) Changes of Bacterial Community Structure of a Uranium Mining Waste Pile Sample Induced by Addition of U(VI). In: Uranium in the Environment (eds. Merkel B. and Hasche-Berger A.), pp. 199-205

    Google Scholar 

  • Holmes DE, Finneran KT, O’Neil RA, Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306

    Article  Google Scholar 

  • Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A, Chang YJ, White DC (2004) In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38:468–475

    Article  Google Scholar 

  • Koban A, Bernhard G (2007) Uranium(VI) complexes with phospholipid model compounds - A laser spectroscopic study. J Inor Biochem 101:750–757

    Article  Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416.

    Article  Google Scholar 

  • Madden AS, Smith AC, Balkwill DL, Fagan LA, Phelps TJ (2007) Microbial uranium immobilization independent of nitrate reduction. Environ Microbiol 9:2321–2330.

    Article  Google Scholar 

  • Merroun ML, Geipel G, Nicolai R, Heise KH, Selenska-Pobell S (2003) Complexation of uranium(VI) by three eco-types of Acidithiobacillus ferrooxidans studied using time-resolved laser-induced fluorescence spectroscopy and infrared spectroscopy. Biometals 16:331–339

    Article  Google Scholar 

  • Nevin KP, Finneran KT, Lovley DR (2003) Microorganisms associated with urnium bioremediation in a high-salinity subsurface sediment. Appl Environ Microbiol 69: 3672-3675

    Article  Google Scholar 

  • North NN, Dollhopf SL, Petrie L, Istok JD, Balkwill DL, Kostka JE (2004) Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl Environ Microbiol 70:4911–4920

    Article  Google Scholar 

  • Nyman JL, Marsh TL, Ginder-Vogel MA, Gentile M, Fendorf S, Criddle C (2006) Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. Biodegradation 17:303–316

    Article  Google Scholar 

  • Panak PJ, Raff J, Selenska-Pobell S, Geipel G, Bernhard G, Nitsche H (2000) Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile. Radiochim Acta,} 88:71–76

    Article  Google Scholar 

  • Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE (2003) Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl Environ Microbiol 69:7467–7479.

    Article  Google Scholar 

  • Selenska-Pobell S, Panak P, Miteva V, Boudakov I, Bernhard G, Nitsche H (1999) Selective accumulation of heavy metals by three indigenous Bacillus strains, B. cereus, B. megaterium and B. sphaericus from drain waters of a uranium waste pile. FEMS Microbiol Ecol 29:59–67

    Article  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KA, Banfield JF (2003) Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microbiol 69:1337–1346

    Article  Google Scholar 

  • Tiedje J M (1988) In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms, Wiley, New York, USA, pp. 179-244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Selenska-Pobell, S., Geissler, A., Merroun, M., Flemming, K., Geipel, G., Reuther, H. (2008). Biogeochemical changes induced by uranyl nitrate in a uranium waste pile. In: Merkel, B.J., Hasche-Berger, A. (eds) Uranium, Mining and Hydrogeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87746-2_96

Download citation

Publish with us

Policies and ethics