Skip to main content

Effective Finite-Valued Approximations of General Propositional Logics

  • Chapter
Pillars of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4800))

Abstract

Propositional logics in general, considered as a set of sentences, can be undecidable even if they have “nice” representations, e.g., are given by a calculus. Even decidable propositional logics can be computationally complex (e.g., already intuitionistic logic is PSPACE-complete). On the other hand, finite-valued logics are computationally relatively simple—at worst NP. Moreover, finite-valued semantics are simple, and general methods for theorem proving exist. This raises the question to what extent and under what circumstances propositional logics represented in various ways can be approximated by finite-valued logics. It is shown that the minimal m-valued logic for which a given calculus is strongly sound can be calculated. It is also investigated under which conditions propositional logics can be characterized as the intersection of (effectively given) sequences of finite-valued logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, A.: The semantics and proof theory of linear logic. Theoret. Comput. Sci. 57, 161–184 (1988)

    Article  MathSciNet  Google Scholar 

  2. Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: Labeled calculi and finite-valued logics. Studia Logica 61, 7–33 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baaz, M., Zach, R.: Short proofs of tautologies using the schema of equivalence. In: Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 33–35. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  4. Baaz, M., Zach, R.: Approximating propositional calculi by finite-valued logics. In: 24th International Symposium on Multiple-valued Logic. ISMVL 1994 Proceedings, pp. 257–263. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  5. Bernays, P.: Axiomatische Untersuchungen des Aussagenkalküls der “Principia Mathematica”. Math. Z. 25, 305–320 (1926)

    Article  MathSciNet  Google Scholar 

  6. Carnielli, W.A.: Systematization of finite many-valued logics through the method of tableaux. J. Symbolic Logic 52, 473–493 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  8. Dummett, M.: A propositional calculus with denumerable matrix. J. Symbolic Logic 24, 97–106 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gabbay, D.M.: Semantical Investigations in Heyting’s Intuitionistic Logic. In: Synthese Library, vol. 148, Reidel, Dordrecht (1981)

    Google Scholar 

  10. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anz. Akad. Wiss. Wien 69, 65–66 (1932)

    Google Scholar 

  11. Gottwald, S.: A Treatise on Many-valued Logics. Research Studies Press, Baldock (2001)

    MATH  Google Scholar 

  12. Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  13. Jaśkowski, S.: Recherches sur la système de la logique intuitioniste. In: Actes du Congrès International de Philosophie Scientifique 1936, Paris, vol. 6, pp. 58–61 (1936)

    Google Scholar 

  14. Lincoln, P.D., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. In: Proceedings 31st IEEE Symposium on Foundations of Computer Science. FOCS 1990, pp. 662–671. IEEE Press, Los Alamitos (1990)

    Chapter  Google Scholar 

  15. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie Cl III 23, 30–50 (1930), English translation in [18, 38–59]

    Google Scholar 

  16. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoret. Comput. Sci. 52, 145–153 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rescher, N.: Many-valued Logic. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  18. Tarski, A.: Logic, Semantics, Metamathematics, 2nd edn. Hackett, Indianapolis (1983)

    Google Scholar 

  19. Troelstra, A.S.: Lectures on Linear Logic. CSLI Lecture Notes, vol. 29. CSLI, Standford, CA (1992)

    MATH  Google Scholar 

  20. Urquhart, A.: Decidability and the finite model property. J. Philos. Logic 10, 367–370 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnon Avron Nachum Dershowitz Alexander Rabinovich

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baaz, M., Zach, R. (2008). Effective Finite-Valued Approximations of General Propositional Logics. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds) Pillars of Computer Science. Lecture Notes in Computer Science, vol 4800. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78127-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78127-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78126-4

  • Online ISBN: 978-3-540-78127-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics