Skip to main content

Maximum Likelihood Estimators on Manifolds

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

Maximum likelihood estimator (MLE) is a well known estimator in statistics. The popularity of this estimator stems from its asymptotic and universal properties. While asymptotic properties of MLEs on Euclidean spaces attracted a lot of interest, their studies on manifolds are still insufficient. The present paper aims to give a unified study of the subject. Its contributions are twofold. First it proposes a framework of asymptotic results for MLEs on manifolds: consistency, asymptotic normality and asymptotic efficiency. Second, it extends popular testing problems on manifolds. Some examples are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Said, S., et al.: Riemannian Gaussian distributions on the space of symmetric positive definite matrices. IEEE Trans. Inf. Theory 63, 2153–2170 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hajri, H., et al.: Riemannian Laplace distribution on the space of symmetric positive definite matrices. Entropy 18, 98 (2016)

    Article  Google Scholar 

  3. Hajri, H., et al.: A geometric learning approach on the space of complex covariance matrices. In: ICASSP 2017 (2017)

    Google Scholar 

  4. Said, S., et al.: Gaussian distributions on Riemannian symmetric spaces: statistical learning with structured covariance matrices. IEEE Trans. Inf. Theory (2017)

    Google Scholar 

  5. Zanini, P., et al.: Parameters estimate of Riemannian Gaussian distribution in the manifold of covariance matrices. In: IEEE Sensor Array. Rio de Janeiro (2016)

    Google Scholar 

  6. Turaga, P.K., et al.: Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision. In: IEEE Computer Society (2008)

    Google Scholar 

  7. Aggarwal, G., et al.: A system identification approach for video-based face recognition. In: ICPR, vol. 4, pp. 175–178. IEEE Computer Society (2004)

    Google Scholar 

  8. Turaga, P.K., et al.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011)

    Article  MathSciNet  Google Scholar 

  9. Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chikuse, Y.: Statistics on Special Manifolds. Lecture Notes in Statistics, vol. 174. Springer, New York (2003)

    MATH  Google Scholar 

  11. Kwon, J., et al.: A geometric particle filter for template-based visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 625–643 (2014)

    Article  Google Scholar 

  12. Trumpf, J., et al.: Analysis of non-linear attitude observers for time-varying reference measurements. IEEE Trans. Autom. Control 57(11), 2789–2800 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fletcher, P.T., et al.: Gaussian distributions on Lie groups and their application to statistical shape analysis. In: 18th International Conference on Information Processing in Medical Imaging, UK (2003)

    Google Scholar 

  14. Afsari, B.: Riemannian \(L^p\) center of mass: existence, uniqueness and convexity. Proc. Am. Math. Soc. 139(2), 655–673 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann. Stat. 3(1), 1–29 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Heyde, C.C.: Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation. Springer, New York (1997)

    Book  MATH  Google Scholar 

  17. Smith, S.T.: Covariance, subspace, and intrinsic Cramér-Rao bounds. IEEE Trans. Signal Process. 53(5), 1610–1630 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Hajri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hajri, H., Said, S., Berthoumieu, Y. (2017). Maximum Likelihood Estimators on Manifolds. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics