Skip to main content

Bioactive Peptaibols of Forest-Derived Trichoderma Isolates from Section Longibrachiatum

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Filamentous fungi are producers of a large number of secondary metabolites with wide spectra of biological effects. Among them, peptaibols represent a group of compounds produced mainly by members of the mycotrophic filamentous fungal genus Trichoderma. A simple peptaibol characterization strategy including purification and structural elucidation steps was applied to examine the peptaibol production of three strains from the Longibrachiatum section of genus Trichoderma, T. aethiopicum TUCIM 1817, T. novae-zelandiae TUCIM 4158 and T. pseudokoningii TUCIM 1277, all deriving from natural forest habitats (disturbed semiforest, native Notophagus forest and the bark of Beilschmiedia tawa, respectively). After the solid phase clean-up of culture extracts, mass spectrometric analysis of peptaibols produced by the examined strains was performed by on-line reversed-phase high performance liquid chromatography coupled to electrospray ionization ion trap mass spectrometry. All three examined species produced 20-residue trichobrachin-like compounds, some of which are known from the literature, while others proved to be different from any peptaibols reported so far. The spectra of the peptaibols produced by these isolates were entirely different from each other. The largest amount of peptaibols consisting of four yet unknown compounds was produced by T. pseudokoningii TUCIM 1277, while ten and eight new, trichobrachin-like compounds were detected from T. aethiopicum TUCIM 1817 and T. novae-zelandiae TUCIM 4158, respectively. Feline fetal lung cell proliferation inhibition tests and membrane damage bio-assay with boar sperm cells revealed that although T. novae-zelandiae TUCIM 4158 produced the least amount of peptaibols, its compounds were the most inhibitory to mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm, K., Taponen, J., Dahlbom, M., Tuunainen, E., Koskinen, E., & Andersson, M. (2001). A novel automated fluorometric assay to evaluate sperm viability and fertility in dairy bulls. Theriogenology, 56, 677–684.

    Article  CAS  PubMed  Google Scholar 

  • Bencsik, O., Papp, T., Berta, M., Zana, A., Forgó, P., Dombi, G., Andersson, M. A., Salkinoja-Salonen, M., Vágvölgyi, C., & Szekeres, A. (2014). Ophiobolin A from Bipolaris oryzae perturbs motility and membrane integrities of porcine sperm and induces cell death on mammalian somatic cell lines. Toxins, 23, 2857–2871.

    Article  Google Scholar 

  • Biemann, K. (1990). Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods in Enzymology, 193, 455–479.

    Article  CAS  PubMed  Google Scholar 

  • Brückner, H., Kirschbaum, J., & Jaworski, A. (2002). Sequences of peptaibol antibiotics trichoaureocins from Trichoderma aureoviride. In E. Benedetti, & C. Pedone (Eds.), Peptides 2002 – Proceedings of the 27th European Peptide Symposium, Edizioni Ziino, Napoli, pp. 362–363.

    Google Scholar 

  • Harman, G. E., & Kubicek, C. P. (1998). Trichoderma and Gliocladium, enzymes, biological control and commercial applications (Vol. 2, p. 393). London: Taylor & Francis.

    Google Scholar 

  • Hatvani, L., Manczinger, L., Vágvölgyi, C., & Kredics, L. (2013). Trichoderma as a human pathogen. In P. K. Mukherjee, B. A. Horwitz, U. S. Singh, M. Mukherjee, & M. Schmoll (Eds.), Trichoderma – Biology and applications (pp. 292–313). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Hoornstra, D., Andersson, M. A., Mikkola, R., & Salkinoja-Salonen, M. S. (2003). A new method for in vitro detection of microbially produced mitochondrial toxins. Toxicology in Vitro, 17, 745–751.

    Google Scholar 

  • Krause, C., Kirschbaum, J., Jung, G., & Brückner, H. (2006). Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. Journal of Peptide Science, 12, 321–327.

    Google Scholar 

  • Krause, C., Kirschbaum, J., & Brückner, H. (2007). Peptaibiomics: microheterogeneity, dynamics, and sequences of trichobrachins, peptaibiotics from Trichoderma parceramosum BISSETT (T. longibrachiatum RIFAI). Chemistry & Biodiversity, 4, 1083–1102.

    Article  CAS  Google Scholar 

  • Kredics, L., Antal, Z., Dóczi, I., Manczinger, L., Kevei, F., & Nagy, E. (2003). Clinical importance of the genus Trichoderma. A review. Acta Microbiologica et Immunologica Hungarica, 50, 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Kubicek, C. P., Mikus, M., Schuster, A., Schmoll, M., & Seiboth, B. (2009). Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels, 2, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leclerc, G., Rebuffat, S., Goulard, C., & Bodo, B. (1998). Direct biosynthesis of peptaibol antibiotics in two Trichoderma strains. Journal of Antibiotics, 51, 170–177.

    Article  CAS  PubMed  Google Scholar 

  • Maddau, L., Cabras, A., Franceschini, A., Linaldeddu, B. T., Crobu, S., Roggio, T., & Pagnozzi, D. (2009). Occurrence and characterization of peptaibols from Trichoderma citrinoviride, an endophytic fungus of cork oak, using electrospray ionization quadrupole time-of-flight mass spectrometry. Microbiology (UK), 155, 3371–3381.

    Article  CAS  Google Scholar 

  • Marik, T., Várszegi, C., Kredics, L., Vágvölgyi, C., & Szekeres, A. (2013). Mass spectrometric investigation of alamethicin. Acta Biologica Szegediensis, 57, 109–112.

    Google Scholar 

  • Mikkola, R., Andersson, M. A., Kredics, L., Grigoriev, P. A., Sundell, N., & Salkinoja-Salonen, M. S. (2012). 20-residue and 11-residue peptaibols from the fungus Trichoderma longibrachiatum are synergistic in forming Na+/K+ permeable channels and adverse action towards mammalian cells. FEBS Journal, 279, 4172–4190.

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff, P., & Fohlman, J. (1984). Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomedical Mass Spectrometry, 11, 601.

    Article  CAS  PubMed  Google Scholar 

  • Samuels, G. J., Petrini, O., Kuhls, K., Lieckfeldt, E., & Kubicek, C. P. (1998). The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Studies in Mycology, 41, 1–54.

    Google Scholar 

  • Samuels, G. J., Ismaiel, A., Mulaw, T. B., Szakacs, G., Druzhinina, I. S., Kubicek, C. P., & Jaklitsch, W. M. (2012). The Longibrachiatum clade of Trichoderma: A revision with new species. Fungal Diversity, 55, 77–108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivasithamparam, K. & Ghisalberti, E. L. (1998). Secondary metabolism in Trichoderma and Gliocladium. In C. P. Kubicek, & G. E. Harman (Eds.), Trichoderma and Gliocladium. Vol. 1. Basic biology, taxonomy and genetics (pp. 139–191). London: Taylor and Francis Ltd, London.

    Google Scholar 

  • Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L., & Vágvölgyi, C. (2005). Peptaibols and related peptaibiotics of Trichoderma. A review. Acta Microbiologica et Immunologica Hungarica, 52, 137–168.

    Article  CAS  PubMed  Google Scholar 

  • Thrane, U., Poulsen, S. B., Nirenberg, H. I., & Lieckfeldt, E. (2001). Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiology Letters, 203, 249–255.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants NKFI K-105972 (National Research, Development and Innovation Office, Hungary), GINOP-2.3.2-15-2016-00052 (Széchenyi 2020 Programme, Hungary), TSR 112134 (Finnish Work Environment Fund, Finland), SA 289161 (Academy of Finland) and 95öu4 (Austrian-Hungarian Action Fund). The technical assistance of L. Atanasova is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kredics .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Marik, T. et al. (2017). Bioactive Peptaibols of Forest-Derived Trichoderma Isolates from Section Longibrachiatum . In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_17

Download citation

Publish with us

Policies and ethics