Skip to main content

Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

In this chapter we summarize current knowledge of the internal structure of giant planets. We concentrate on the importance of heavy elements and their role in determining the planetary composition and internal structure, in planet formation, and during the planetary long-term evolution. We briefly discuss how internal structure models are derived, present the possible structures of the outer planets in the Solar System, and summarize giant planet formation and evolution. Finally, we introduce giant exoplanets and discuss how they can be used to better understand giant planets as a class of planetary objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibert Y, Mordasini C, Benz W, Winisdoer C (2005) Models of giant planet formation with migration and disc evolution. A&A 434:343

    Article  ADS  Google Scholar 

  • Baraffe I, Chabrier G, Barman T (2008) Structure and evolution of super-Earth to super-Jupiter exoplanets: I. Heavy element enrichment in the interior. A&A 482:315

    Article  ADS  Google Scholar 

  • Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary Internal Structures. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI, vol 914. University of Arizona Press, Tucson, p 763

    Google Scholar 

  • Bolton SJ et al (2017) Jupiter’s interior and deep atmosphere: the initial pole-to- pole passes with the Juno spacecraft. Science 356(6340):821–825

    Article  ADS  Google Scholar 

  • Burrows A, Hubeny I, Budaj J, Hubbard WB (2007) Possible solutions to the radius anomalies of transiting giant planets. ApJ 661:502

    Article  ADS  Google Scholar 

  • Chabrier G, Baraffe I (2007) Heat transport in giant (exo)planets: a new perspective. ApJL 661:L81

    Article  ADS  Google Scholar 

  • Conrath D, Gautier D (2000) Saturn helium abundance: a reanalysis of voyager measurements. Icarus 144:124

    Article  ADS  Google Scholar 

  • Deming D, Seager S (2017) Illusion and reality in the atmospheres of exoplanets. JGR Planets 122:53

    ADS  Google Scholar 

  • Folkner WM et al (2017) Jupiter gravity field estimated from the first two Juno orbits. Geophys Res Lett 44. https://doi.org/10.1002/2017GL073140

    Article  ADS  Google Scholar 

  • Fortney JJ, Hubbard WB (2003) Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164:228

    Article  ADS  Google Scholar 

  • Fortney JJ, Nettelmann N (2010) The interior structure, composition, and evolution of giant planets. Space Sci Rev 152:423

    Article  ADS  Google Scholar 

  • Fortney JJ, Helled R, Nettelmann N, Stevenson DJ, Marley MS, Hubbard WB, Iess L (2016) Invited review for the forthcoming volume “Saturn in the 21st Century.” eprint arXiv:1609.06324

    Google Scholar 

  • Fuller J (2014) Saturn ring seismology: evidence for stable stratification in the deepinterior of Saturn. Icarus 242:283

    Article  ADS  Google Scholar 

  • Guillot T (1999) A comparison of the interiors of Jupiter and Saturn. Icarus 47:1183–1200

    Google Scholar 

  • Guillot T (2005) The interiors of giant planets: models and outstanding questions. Annu Rev Earth Planet Sci 33:493–530

    Article  ADS  Google Scholar 

  • Guillot T, Showman AP (2002) Evolution of “51 pegasus b-like” planets. A&A 385:156

    Article  ADS  Google Scholar 

  • Guillot T, Gautier D (2015) Giant planets. In: Schubert G, Spohn T (eds) Treatise on geophysics, 2nd edn. Elsevier. http://adsabs.harvard.edu/abs/2014arXiv1405.3752G

  • Guillot T, Burrows A, Hubbard WB, Lunine JI, Saumon D (1996) Giant planets at small orbital distances. ApJL 459:L35

    Article  ADS  Google Scholar 

  • Guillot T, Stevenson DJ, Hubbard WB, Saumon D (2004) The interior of Jupiter. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter. The planet, satellites and magnetosphere. Cambridge planetary science, vol 1. Cambridge University Press, Cambridge, pp 35–57. ISBN:0-521-81808-7

    Google Scholar 

  • Guillot T, Santos NC, Pont F, Iro N, Melo C, Ribas I (2006) A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars. A&A 453:L21

    Article  ADS  Google Scholar 

  • Helled R, Guillot T (2013) Interior models of Saturn: including the uncertainties in shape and rotation. ApJ 767:113

    Article  ADS  Google Scholar 

  • Helled R, Lunine J (2014) Measuring Jupiter’s water abundance by Juno: the link between interior and formation models. MNRAS 441:2273

    Article  ADS  Google Scholar 

  • Helled R, Anderson JD, Schubert G (2010) Uranus and Neptune: shape and rotation. Icarus 210:446

    Article  ADS  Google Scholar 

  • Helled R, Anderson JD, Podolak M, Schubert G (2011) Interior models of Uranus and Neptune. ApJ 726:15

    Article  ADS  Google Scholar 

  • Helled R, Galanti E, Kaspi Y (2015) Saturn’s fast spin determined from its gravitational field and oblateness. Nature 520(7546):202–204

    Article  ADS  Google Scholar 

  • Hori Y, Ikoma M (2011) Gas giant formation with small cores triggered by envelope pollution by icy planetesimals. MNRAS 416:419

    Article  ADS  Google Scholar 

  • Hubbard WB, Militzer B (2016) A preliminary Jupiter model. ApJ 820:80

    Article  ADS  Google Scholar 

  • Iaroslavitz E, Podolak M (2007) Atmospheric mass deposition by captured planetesimals. Icarus 187:600

    Article  ADS  Google Scholar 

  • Ikoma M, Guillot T, Genda H, Tanigawa T, Ida S (2006) On the origin of HD 149026b. Astrophys J 650(2):1150–1159

    Article  ADS  Google Scholar 

  • Kurokawa H, Inutsuka S (2015) On the radius anomaly of hot Jupiters: reexamination of the possibility and impact of layered convection. ApJ 815:78

    Article  ADS  Google Scholar 

  • Lambrechts M, Johansen A (2014) Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. A&A 572:12, id. A107

    Google Scholar 

  • Laughlin G, Crismani M, Adams FC (2011) On the anomalous radii of the transiting extrasolar planets. ApJL 729:L7

    Article  ADS  Google Scholar 

  • Leconte J, Chabrier G (2012) A new vision on giant planet interiors: the impact of double diffusive convection. A&A 540:A20

    Article  ADS  Google Scholar 

  • Leconte J, Chabrier G (2013) Layered convection as the origin of Saturn’s luminosity anomaly. Nat Geosci 6:347

    Article  ADS  Google Scholar 

  • Levison HF, Kretke KA, Duncan MJ (2016) Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:322

    Article  ADS  Google Scholar 

  • Lorenzen W, Holst B, Redmer R (2009) Demixing of hydrogen and helium at megabar pressures. PRL 102(11):115701

    Article  ADS  Google Scholar 

  • Lorenzen W, Holst B, Redmer R (2011) Metallization in hydrogen-helium mixtures. Phys Rev B 84(23):235109

    Article  ADS  Google Scholar 

  • Loubeyre P, Letoullec R, Pinceaux JP (1991) A new determination of the binary phase diagram of H2-He mixtures at 296 K. J Phys Condens Matter 3:3183

    Article  ADS  Google Scholar 

  • Lozovsky M, Helled R, Rosenberg ED, Bodenheimer P (2017) Jupiter’s formation and its primordial internal structure. ApJ 836:16, article id. 227

    Article  ADS  Google Scholar 

  • Mankovich C, Fortney JJ, Moore KL (2016) Bayesian evolution models for Jupiter with helium rain and double-diffusive convection. ApJ 832:13, article id. 113

    Article  ADS  Google Scholar 

  • Marley MS, Gómez P, Podolak M (1995) Monte Carlo interior models for Uranus and Neptune. GJR 100:23349

    Article  Google Scholar 

  • Miguel Y, Guillot T, Fayon L (2016) Jupiter internal structure: the effect of different equations of state. A&A 596:12, id. A114

    Google Scholar 

  • Militzer B, Hubbard WB, Vorberger J, Tamblyn I, Bonev SA (2008) A massive core in Jupiter predicted from first-principles simulations. ApJL 688:L45

    Article  ADS  Google Scholar 

  • Militzer B, Soubiran F, Wahl SM, Hubbard W (2016) Understanding Jupiter’s interior. JGR Planets 121:1552

    ADS  Google Scholar 

  • Mirouh GM, Garaud P, Stellmach S, Traxler AL, Wood TS (2012) ApJ 750:61

    Article  ADS  Google Scholar 

  • Morales MA, Schwegler E, Ceperley D et al (2009) Phase separation in hydrogen-helium mixtures at Mbar pressures. PNAS 106:1324

    Article  ADS  Google Scholar 

  • Morales MA, Hamel S, Caspersen K, Schwegler E (2013) Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors. Phys Rev B 87:174105

    Article  ADS  Google Scholar 

  • Moutou C, Deleuil M, Guillot T, Baglin A, Bordé P, Bouchy F, Cabrera J, Csizmadia S, Deeg HJ (2013) CoRoT: harvest of the exoplanet program. Icarus 226:1625–1634

    Article  ADS  Google Scholar 

  • Nettelmann N, Holst B, Kietzmann A, French M, Redmer R, Blaschke D (2008) Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. ApJ 683:1217

    Article  ADS  Google Scholar 

  • Nettelmann N, Helled R, Fortney JJ, Redmer R (2012a) New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modi ed shape and rotation data. Planet Space Sci 77:143. Special edition

    Article  ADS  Google Scholar 

  • Nettelmann N, Püstow R, Redmer R (2013) Saturn layered structure and homogeneous evolution models with different EOSs. Icarus 225:548

    Article  ADS  Google Scholar 

  • Nettelmann N, Fortney JJ, Moore K, Mankovich C (2015) An exploration of double diffusive convection in Jupiter as a result of hydrogen-helium phase separation. Mon Not R Astron Soc 447(4):3422–3441

    Article  ADS  Google Scholar 

  • Nettelmann N, Wang K, Fortney JJ, Hamel S, Yellamilli S, Bethkenhagen M, Redmer R (2016) Uranus evolution models with simple thermal boundary layers. Icarus 275:107–116

    Article  ADS  Google Scholar 

  • Paardekooper SJ, Mellema G (2004) Planets opening dust gaps in gas disks. A&A 425:L9

    Article  ADS  Google Scholar 

  • Podolak M, Helled R (2012) What do we really know about Uranus and Neptune? ApJL 759(2):7, article id. L32

    Article  ADS  Google Scholar 

  • Podolak M, Hubbard WB, Stevenson DJ (1991) Model of Uranus interior and magnetic field. In: Uranus, vol 2961. University of Arizona Press, Tucson

    Google Scholar 

  • Podolak M, Podolak JI, Marley MS (2000) Further investigations of random models of Uranus and Neptune. PSS 48:143

    Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62

    Article  ADS  Google Scholar 

  • Rosenblum E, Garaud P, Traxler A, Stellmach S (2011) Erratum: “Turbulent mixing and layer formation in double-diffusive convection: three-dimensional numerical simulations and theory”. ApJ 742:132

    Article  ADS  Google Scholar 

  • Saumon D, Guillot T (2004) Shock compression of deuterium and the interiors of Jupiter and Saturn. ApJ 609:1170

    Article  ADS  Google Scholar 

  • Schouten JA, de Kuijper A, Michels JPJ (1991) Critical line of He-H2 up to 2500 K and the influence of attraction on fluid-fluid separation. Phys Rev B 44:6630

    Article  ADS  Google Scholar 

  • Spilker LJ (2012) Cassini: science highlights from the equinox and solstice missions. In: Lunar and Planetary Institute Science Conference Abstracts, vol 43, p 1358

    ADS  Google Scholar 

  • Stevenson DJ, Salpeter EE (1977a) The dynamics and helium distribution in hydrogen-helium fluid planets. ApJS 35:239

    Article  ADS  Google Scholar 

  • Stevenson DJ, Salpeter EE (1977b) The phase diagram and transport properties for hydrogen-helium fluid planets. ApJS 35:221

    Article  ADS  Google Scholar 

  • Tanaka H, Ida S (1999) Growth of a migrating protoplanet. Icarus 139:350

    Article  ADS  Google Scholar 

  • Thorngren DP, Fortney JJ, Murray-Clay RA, Lopez ED (2016) The mass-metallicity relation for giant planets. ApJ 831:14, article id. 64

    Article  ADS  Google Scholar 

  • Vazan A, Kovetz A, Podolak M, Helled R (2013) The effect of composition on the evolution of giant and intermediate-mass planets. Mon Not R Astron Soc 434(4):3283–3292

    Article  ADS  Google Scholar 

  • Vazan A, Helled R, Kovetz A, Podolak M (2015) Convection and mixing in giant planet evolution. ApJ 803:32

    Article  ADS  Google Scholar 

  • Vazan A, Helled R, Podolak M, Kovetz A (2016) The evolution and internal structure of Jupiter and Saturn with compositional gradients. ApJ 829:118

    Article  ADS  Google Scholar 

  • Venturini J, Alibert Y, Benz W (2016) Planet formation with envelope enrichment: new insights on planetary diversity. A&A 596:14, id. A90

    Google Scholar 

  • von Zahn U, Hunten DM, Lehmacher G (1998) Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment. JGR 103:22815

    Article  ADS  Google Scholar 

  • Wahl SM et al (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of an expanded core. Geophys Res Lett 44:4649–4659

    Article  ADS  Google Scholar 

  • Wilson HF, Militzer B (2010) Sequestration of noble gases in giant planet interiors. PRL 104:121101

    Article  ADS  Google Scholar 

  • Wilson HF, Militzer B (2012) Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets. ApJ 745:54

    Article  ADS  Google Scholar 

  • Wood TS, Garaud P, Stellmach S (2013) A new model for mixing by double-diffusive convection (semi-convection). II. The transport of heat and composition through layers. ApJ 768:157

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R. H. acknowledges support from the Swiss National Science Foundation (SNSF), project number 200021-169054. T.G. acknowledges support from CNES and from ANR JOVIAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravit Helled .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Helled, R., Guillot, T. (2018). Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_44

Download citation

Publish with us

Policies and ethics