Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We classified tsunamigenic earthquakes in subduction zones into three types: earthquakes at the plate interface (typical interplate events), earthquakes at the outer rise, within the subducting slab or overlying crust (intraplate events), and “tsunami earthquakes” that generate considerably larger tsunamis than expected from seismic waves. The depth range of a typical interplate earthquake source is 10—40 km, controlled by temperature and other geological parameters. The slip distribution varies both with depth and along-strike. Recent examples show very different temporal change of slip distribution in the Aleutians and the Japan trench. The tsunamigenic coseismic slip of the 1957 Aleutian earthquake was concentrated on an asperity located in the western half of an aftershock zone 1200 km long. This asperity ruptured again in the 1986 Andreanof Islands and 1996 Delarof Islands earthquakes. By contrast, the source of the 1994 Sanriku-oki earthquake corresponds to the low slip region of the previous interplate event, the 1968 Tokachi-oki earthquake. Tsunamis from intraplate earthquakes within the subducting slab can be at least as large as those from interplate earthquakes; tsunami hazard assessments must include such events. Similarity in macroseismic data from two southern Kuril earthquakes illustrates difficulty in distinguishing interplate and slab events on the basis of historical data such as felt reports and tsunami heights. Most moment release of tsunami earthquakes occurs in a narrow region near the trench, and the concentrated slip is responsible for the large tsunami. Numerical modeling of the 1996 Peru earthquake confirms this model, which has been proposed for other tsunami earthquakes, including 1896 Sanriku, 1946 Aleutian and 1992 Nicaragua.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K. (1979), Size of Great Earthquakes of 1873-1974 Inferred from Tsunami Data, J. Geophys. Res. 84, 1561–1568.

    Article  Google Scholar 

  • Abe, K. (1989), Quantification of Tsunamigenic Earthquakes by the M t Scale, Tectonophysics 166, 27–34.

    Article  Google Scholar 

  • Atwater, B. F., Nelson, A. R., Clague, J. J., Carver, G. A., Yamaguchi, D. K., Bobrowsky, P. T., Bourgeois, J., Darienzo, M. E., Grant, W. C., Hemphill-Haley, E., Kesley, H. M., Jacoby, G. C., Nishenko, S. P., Palmer, S. P., Peterson, C. D., and Reinhart, M. A. (1995), Summary of Coastal Geologic Evidence for Past Great Earthquakes at the Cascadia Subduction Zone, Earthquake Spectra 11, 1–18.

    Article  Google Scholar 

  • Barrientos, S. E., and Ward, S. N. (1990), The 1960 Chile Earthquake: Coseismic Slip from Surface Deformation, Geophys. J. Int. 103, 589–598.

    Article  Google Scholar 

  • Byrne, D. E., Davies, D. M., and Sykes, L. R. (1988), Loci and Maximum Size of Thrust Earthquakes and the Mechanics of the Shallow Region of Subduction Zones, Tectonics 7, 833–857.

    Article  Google Scholar 

  • Campos, J., Madariaga, R., and Scholz, C. (1996), Faulting Process of the August 8, 1993, Guam Earthquake: A Thrust Event in an Otherwise Weakly Coupled Subduction Zone, J. Geophys. Res. 101,17, 581–17,596.

    Google Scholar 

  • Clague, J. J. (1997), Evidence for Large Earthquakes at the Cascadia Subduction Zone, Rev. Geophys. 35, 439–460.

    Article  Google Scholar 

  • Dziewonski, A. M., Ekström, G., and Salganik, M. P. (1997), Centroid-moment Tensor Solutions for January-March 1996, Phys. Earth Planet. Inter. 102, 1–9.

    Article  Google Scholar 

  • Fukao, Y. (1979), Tsunami Earthquakes and Subduction Processes near Deep-sea Trenches, J. Geophys.Res. 84, 2303–2314.

    Article  Google Scholar 

  • Geller, R. J. (1976), Scaling Relations for Earthquake Source Parameters and Magnitudes, Bull. Seismol. Soc. Am. 66, 1501–1523.

    Google Scholar 

  • H[UPATORI, T. (1995), Distributions of Wave-heights for the 1994 Hokaido Toho-oki and Kurile Tsunamis, Zisin, J. Seism. Soc. Japan 48, 307–314 (in Japanese).

    Google Scholar 

  • Heinrich, P., Schindele, F., Guibourg, S., and Ihmlé, P. F. (1998), Modeling the February 1996 Peruvian Tsunami, Geophys. Res. Lett. 25, 2687–2690.

    Article  Google Scholar 

  • Holdahl, S. R., and Sauber, J. (1994), Coseismic Slip in the 1964 Prince William Sound Earthquake: A New Geodetic Inversion, Pure appl. geophys. 142, 55–82.

    Article  Google Scholar 

  • Hyndman, R. D., and Wang, K. (1993), Thermal Constraints on the Zone of Major Thrust Earthquake Failure: The Cascadia Subduction Zone, J. Geophys. Res. 98,2039–2060.

    Article  Google Scholar 

  • Hyndman, R. D., and Wang, K. (1995), Constraints on the Rupture Zone of Great Earthquakes on the Cascadia Subduction Thrust from Current Deformation and the Thermal Regime, J.Geophys. Res. 100,22, 133–22,154.

    Google Scholar 

  • Hyndman, R. D., Yamano, M., and Oleskevich, D. A. (1997), The Seismogenic Zone of Subduction Thrust Faults, The Island Arc 6, 244–260.

    Article  Google Scholar 

  • Ihmlé, P. F., Gomez, J.-M., Heinrich, P., and Guibourg, S. (1998), The 1996 Peru Tsunamigenic Earthquake: Broadband Source Process, Geophys. Res. Lett. 25, 2691–2694.

    Article  Google Scholar 

  • Ishibashi, K., and Satake, K. (1998), Problems on Forecasting Great Earthquakes in the Subduction Zones around Japan by Means of Paleoseismology, Zisin, J. Seism. Soc. Japan 50, Appendix, 1–21 (in Japanese).

    Google Scholar 

  • Johnson, J. M. (1998), Heterogeneous Coupling along the Alaska-Aleutians as Inferred from Tsunami, Seismic, and Geodetic Inversions, Advances in Geophysics 39, 1–116.

    Article  Google Scholar 

  • Johnson, J. M., and Satake, K. (1993), Source Parameters of the 1957 Aleutian Earthquake from Tsunami Wave Forms, Geophys. Res. Lett. 20, 1487–1490.

    Article  Google Scholar 

  • Johnson, J. M., and Satake, K. (1994), Rupture Extent of the 1938 Alaskan Earthquake as Inferred from Tsunami Wave Forms, Geophys. Res. Lett. 21, 733–736.

    Article  Google Scholar 

  • Johnson, J. M., and Satake, K. (1996), 1965 Rat Islands Earthquake: A Critical Comparison of Seismic and Tsunami Wave Inversions, Bull. Seismol. Soc. Am. 86, 1229–1237.

    Google Scholar 

  • Johnson, J. M., and Satake, K. (1997), Estimation of Seismic Moment and Slip Distribution of the April 1, 1946, Aleutian Tsunami Earthquake, J. Geophys. Res. 102,11, 765–11,774.

    Article  Google Scholar 

  • Johnson, J. M., Satake, K., Holdahl, S. R., and Sauber, J. (1996), The 1964 Prince William Sound Earthquake: Joint Inversion of Tsunami and Geodetic Data, J. Geophys. Res. 101, 523–532.

    Article  Google Scholar 

  • Johnson, J. M., Tanioka, Y., Ruff, L. J., Satake, K., Kanamori, H., and Sykes, L. R. (1994), The 1957 Great Aleutian Earthquake, Pure appl. geophys. 142, 3–28

    Article  Google Scholar 

  • Kamamori, H. (1971), Seismological Evidence for a Lithospheric Normal Faulting—The Sanriku Earthquake of 1933, Phys. Earth Planet. Inter. 4, 289–300.

    Article  Google Scholar 

  • Kanamori, H. (1972), Mechanism of Tsunami Earthquakes, Phys. Earth Planet. Inter. 6, 246–259.

    Article  Google Scholar 

  • Kanamori, H., and Kikuchi, M. (1993), The 1992 Nicaragua Earthquake: A Slow Tsunami Earthquake Associated with Subducted Sediments, Nature 361, 714–716.

    Article  Google Scholar 

  • Kikuchi, M., and Fukao, Y. (1987), Inversion of Long-period P Waves from Great Earthquakes along Subduction Zones, Tectonophysics 144, 231–247.

    Article  Google Scholar 

  • Lay, T., and Kanamori, H., An asperity model of large earthquake sequences. In Earthquake Prediction—An International Review (eds. Simpson, D. W., and Richards, P. G.) (American Geophysical Union, Washington DC 1981) pp. 579–59

    Google Scholar 

  • Nishenko, S. P. (1991), Circum-Pacific Seismic Potential: 1989-1999, Pure appl. geophys. 135, 169–259.

    Article  Google Scholar 

  • Okal, E. A. (1988), Seismic Parameters Controlling Far-field Tsunami Amplitudes: A Review, Natural Hazards 1, 67–96.

    Article  Google Scholar 

  • Pelayo, A. M., and Wiens, D. A. (1992), Tsunami Earthquakes: Slow Thrust-faulting Events in the Accretionary Wedge,J. Geophys. Res. 97,15, 321–15,337.

    Google Scholar 

  • Ruff, L., and Kanamori, H. (1983), The Rupture Process and Asperity Distribution of Three Great Earthquakes from Long-period Diffracted P Waves, Phys. Earth Planet. Inter. 31, 202–230.

    Article  Google Scholar 

  • Ruff, L., and Tichelaar, B. W., What controls the seismogenic plate interface in subduction zone? In Subduction: Top to Bottom(eds. Bebout, G. E., Scholl, D. W., Kirby, S. H., and Platt, J. P.) (American Geophysical Union, Washington DC 1996) pp. 105–111.

    Google Scholar 

  • Satake, K. (1989),Inversion of Tsunami Wave Forms for the Estimation of Heterogeneous Fault Motion of Large Submarine Earthquakes: The 1968 Tokachi-oki and the 1983 Japan Sea Earthquakes, J. Geophys. Res. 94, 5627–5636.

    Article  Google Scholar 

  • Satake, K. (1993), Depth Distribution of Coseismic Slip along the Nankai Trough, Japan, from Joint Inversion of Geodetic and Tsunami Data, J. Geophys. Res. 98, 4553–4565.

    Article  Google Scholar 

  • Satake, K. (1994), Mechanism of the 1992 Nicaragua Tsunami Earthquake,Geophys. Res. Lett. 21, 2519–2522.

    Article  Google Scholar 

  • Satake, K. (1995), Linear and Non-linear Computations of the 1992 Nicaragua Earthquake Tsunami, Pure appl. geophys. 144, 455–470.

    Article  Google Scholar 

  • Satake, K., and Imamura, F. (1995), Introduction to “Tsunamis: 1992-94”Pure appl. geophys. 144, 373–379.

    Article  Google Scholar 

  • Satake, K., Yoshida, Y., and Abe, K. (1992), Tsunami from the Mariana Earthquake of April 5, 1990: Its Abnormal Propagation and Implications for Tsunami Potential from Outer-rise Earthquakes, Geophys. Res. Lett. 19, 301–304.

    Article  Google Scholar 

  • Spence, W. (1986), The 1977 Sumba Earthquake Series: Evidence for Slab Pull Force Acting at a Subduction Zone, J. Geophys. Res. 91, 7225–7239.

    Article  Google Scholar 

  • Sykes, L. R. (1971), Aftershock Zones of Great Earthquakes, Seismicity Gap, and Earthquake Prediction for Alaska and the Aleutians, J. Geophys. Res. 76, 8021–8041.

    Article  Google Scholar 

  • Tanioka, Y., and Gonzarez, F. I. (1998), The Aleutian Earthquake of June 19, 1996 (M w 7.9) Ruptured Parts of Both the Andreanof and Delarof Segments, Geophys. Res. Lett. 25, 2245–2248.

    Article  Google Scholar 

  • Tanioka, Y., Ruff, L., and Satake, K. (1995a), The Great Kuril Earthquake of October 4, 1994 Tore the Slab, Geophys. Res. Lett. 22, 1661–1664.

    Article  Google Scholar 

  • Tanioka, Y., Satake, K., and Ruff, L. (1995b), Analysis of Seismological and Tsunami Data from the 1993 Guam Earthquake Pure appl. geophys. 144, 823–837.

    Google Scholar 

  • Tanioka, Y., Ruff, L., and Satake, K. (1996), The Sanriku-oki, Japan, Earthquake of December 28, 1994 (M w 7.7): Rupture of a Different Asperity from a Previous Earthquake, Geophys. Res. Lett. 23, 1465–1468.

    Article  Google Scholar 

  • Tanioka, Y., Ruff, L., and Satake, K. (1997), What Controls the Lateral Variation of Large Earthquake Occurrence along the Japan Trench? The, Island Arc 6, 261–266.

    Article  Google Scholar 

  • Tanioka, Y., and Satake, K.1996), Fault Parameters of the 1896 Sanriku Tsunami Earthquake Estimated from Tsunami Numerical Modeling, Geophys. Res. Lett. 23, 1549–1552.

    Google Scholar 

  • Thatcher, W. (1984), The Earthquake Deformation Cycle, Recurrence, and the Time-predictable Model, J. Geophys. Res. 89, 5674–5680.

    Article  Google Scholar 

  • Thatcher, W. (1990), Order and Diversity in the Modes of Circum-Pacific Earthquake Recurrence, J. Geophys. Res. 95, 2609–2623.

    Article  Google Scholar 

  • Tichelaar, B., and Ruff, L. (1993), Depth of Seismic Coupling along Subduction Zones, J. Geophys. Res. 98, 2017–2037.

    Article  Google Scholar 

  • Utsu, T. (1971), Seismological Evidence for Anomalous Structure of Island Arcs with Special Reference to the Japanese Region, Rev. Geophys. Space Phys. 9, 839–890.

    Article  Google Scholar 

  • Vrolijk, P. (1990), On the Mechanical Role of Smectite in Subduction Zone, Geology 18, 703–707.

    Article  Google Scholar 

  • Yoshida, Y., Satake, K., and Abe, K. (1992), The Large Normal-faulting Mariana Earthquake of April 5, 1990 in Uncoupled Subduction Zone, Geophys. Res. Lett. 19, 297–300.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Satake, K., Tanioka, Y. (1999). Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones. In: Sauber, J., Dmowska, R. (eds) Seismogenic and Tsunamigenic Processes in Shallow Subduction Zones. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8679-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8679-6_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6146-4

  • Online ISBN: 978-3-0348-8679-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics