Skip to main content

Triplex-Mediated Gene Modification

  • Protocol
Chromosomal Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 435))

Abstract

Gene targeting with DNA-binding molecules such as triplex-forming oligonucleotides or peptide nucleic acids can be utilized to direct mutagenesis or induce recombination site-specifically. In this chapter, several detailed protocols are described for the design and use of triplex-forming molecules to bind and mediate gene modification at specific chromosomal targets. Target site identification, binding molecule design, as well as various methods to test binding and assess gene modification are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felsenfeld, G., Davies, D. R., and Rich, A. (1957) Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 79, 2023–2024.

    Article  CAS  Google Scholar 

  2. Faria, M., Wood, C. D., Perrouault, L., et al. (2000) Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc. Natl. Acad. Sci. USA 97, 3862–3867.

    Article  CAS  PubMed  Google Scholar 

  3. Maher, L. J., III, Wold, B., and Dervan, P. B. (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245, 725–730.

    Article  CAS  PubMed  Google Scholar 

  4. Francois, J. C., Saison-Behmoaras, T., Thuong, N. T., and Helene, C. (1989) Inhibition of restriction endonuclease cleavage via triple helix formation by homopyrimidine oligonucleotides. Biochemistry 28, 9617–9619.

    Article  CAS  PubMed  Google Scholar 

  5. Hanvey, J. C., Shimizu, M., and Wells, R. D. (1990) Site-specific inhibition of EcoRI restriction/modification enzymes by a DNA triple helix. Nucleic Acids Res. 18, 157–161.

    Article  CAS  PubMed  Google Scholar 

  6. Mayfield, C., Ebbinghaus, S., Gee, J., et al. (1994) Triplex formation by the human Ha-ras promoter inhibits Sp1 binding and in vitro transcription. J. Biol. Chem. 269, 18,232–18,238.

    CAS  PubMed  Google Scholar 

  7. Birg, F., Praseuth, D., Zerial, A., et al. (1990) Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agent. Nucleic Acids Res. 18, 2901–2908.

    Article  CAS  PubMed  Google Scholar 

  8. Volkmann, S., Jendis, J., Frauendorf, A., and Moelling, K. (1995) Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA. Nucleic Acids Res. 23, 1204–1212.

    Article  CAS  PubMed  Google Scholar 

  9. Havre, P. A., Gunther, E. J., Gasparro, F. P., and Glazer, P. M. (1993) Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc. Natl. Acad. Sci. USA 90, 7879–7883.

    Article  CAS  PubMed  Google Scholar 

  10. Takasugi, M., Guendouz, A., Chassignol, M., et al. (1991) Sequence-Specific Photo-Induced Cross-Linking of the Two Strands of Double-Helical DNA by a Psoralen Covalently Linked to a Triple Helix-Forming Oligonucleotide. PNAS 88, 5602–5606.

    Article  CAS  PubMed  Google Scholar 

  11. Vasquez, K. M., Wensel, T. G., Hogan, M. E., and Wilson, J. H. (1996) High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene. Biochemistry 35, 10,712–10,719.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, G., Seidman, M. M., and Glazer, P. M. (1996) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271, 802–805.

    Article  CAS  PubMed  Google Scholar 

  13. Vasquez, K. M., Narayanan, L., and Glazer, P. M. (2000) Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290, 530–533.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, X., Tolstonog, G., Shoeman, R. L., and Traub, P. (1996) Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro. DNA Cell Biol. 15, 209–225.

    Article  PubMed  Google Scholar 

  15. Chan, P. P., Lin, M., Faruqi, A. F., Powell, J., Seidman, M. M., and Glazer, P. M. (1999) Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide. J. Biol. Chem. 274, 11,541–11,548.

    Article  CAS  PubMed  Google Scholar 

  16. Datta, H. J., Chan, P. P., Vasquez, K. M., Gupta, R. C., and Glazer, P. M. (2001) Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51. J. Biol. Chem. 276, 18,018–18,023.

    Article  CAS  PubMed  Google Scholar 

  17. Luo, Z., Macris, M. A., Faruqi, A. F., and Glazer, P. M. (2000) High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc. Natl. Acad. Sci. USA 97, 9003–9008.

    Article  CAS  PubMed  Google Scholar 

  18. Seidman, M. M. (2004) Oligonucleotide mediated gene targeting in mammalian cells. Curr. Pharm. Biotechnol. 5, 421–430.

    Article  CAS  PubMed  Google Scholar 

  19. Demidov, V. V., Potaman, V. N., Frank-Kamenetskii, M. D., et al. (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48, 1310–1313.

    Article  CAS  PubMed  Google Scholar 

  20. Faruqi, A. F., Egholm, M., and Glazer, P. M. (1998) Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc. Natl. Acad. Sci. USA 95, 1398–1403.

    Article  CAS  PubMed  Google Scholar 

  21. Hanvey, J. C., Peffer, N. J., Bisi, J. E., et al. (1992) Antisense and antigene properties of peptide nucleic acids. Science 258, 1481–1485.

    Article  CAS  PubMed  Google Scholar 

  22. Koppelhus, U., Zachar, V., Nielsen, P. E., Liu, X., Eugen-Olsen, J., and Ebbesen, P. (1997) Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res. 25, 2167–2173.

    Article  CAS  PubMed  Google Scholar 

  23. Praseuth, D., Grigoriev, M., Guieysse, A. L., et al. (1996) Peptide nucleic acids directed to the promoter of the alpha-chain of the interleukin-2 receptor. Biochim. Biophys. Acta 1309, 226–238.

    CAS  PubMed  Google Scholar 

  24. Nielsen, P. E., Egholm, M., Berg, R. H., and Buchardt, O. (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res. 21, 197–200.

    Article  CAS  PubMed  Google Scholar 

  25. Mollegaard, N. E., Buchardt, O., Egholm, M., and Nielsen, P. E. (1994) Peptide nucleic acid. DNA strand displacement loops as artificial transcription promoters. Proc. Natl. Acad. Sci. USA 91, 3892–3895.

    Article  CAS  PubMed  Google Scholar 

  26. Rogers, F. A., Manoharan, M., Rabinovitch, P., Ward, D. C., and Glazer, P. M. (2004) Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Res. 32, 6595–6604.

    Article  CAS  PubMed  Google Scholar 

  27. Branden, L. J., Mohamed, A. J., and Smith, C. I. (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17, 784–787.

    Article  CAS  PubMed  Google Scholar 

  28. Vasquez, K. M., Dagle, J. M., Weeks, D. L., and Glazer, P. M. (2001) Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides. J. Biol. Chem. 276, 38,536–38,541.

    Article  CAS  PubMed  Google Scholar 

  29. Lacroix, L., Lacoste, J., Reddoch, J. F., et al. (1999) Triplex formation by oligonucleotides containing 5-(1-propynyl)-2′-deoxyuridine: decreased magnesium dependence and improved intracellular gene targeting. Biochemistry 38, 1893–1901.

    Article  CAS  PubMed  Google Scholar 

  30. Puri, N., Majumdar, A., Cuenoud, B., et al. (2002) Minimum number of 2′-O-(2-aminoethyl) residues required for gene knockout activity by triple helix forming oligonucleotides. Biochemistry 41, 7716–7724.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, G. and Glazer, P. M. (1995) Altered repair of targeted psoralen photoadducts in the context of an oligonucleotide-mediated triple helix. J. Biol. Chem. 270, 22,595–22,601.

    Article  CAS  PubMed  Google Scholar 

  32. Majumdar, A., Puri, N., Cuenoud, B., et al. (2003) Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J. Biol. Chem. 278, 11,072–11,077.

    Article  CAS  PubMed  Google Scholar 

  33. Macris, M. A. and Glazer, P. M. (2003) Transcription dependence of chromosomal gene targeting by triplex-forming oligonucleotides. J. Biol. Chem. 278, 3357–3362.

    Article  CAS  PubMed  Google Scholar 

  34. Vasquez, K. M., Wang, G., Havre, P. A., and Glazer, P. M. (1999) Chromosomal mutations induced by triplex-forming oligonucleotides in mammalian cells. Nucleic Acids Res. 27, 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  35. Sargent, R. G., Rolig, R. L., Kilburn, A. E., Adair, G. M., Wilson, J. H., and Nairn, R. S. (1997) Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Proc. Natl. Acad. Sci. USA 94, 13,122–13,127.

    Article  CAS  PubMed  Google Scholar 

  36. Faruqi, A. F., Seidman, M. M., Segal, D. J., Carroll, D., and Glazer, P. M. (1996) Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol. Cell. Biol. 16, 6820–6828.

    CAS  PubMed  Google Scholar 

  37. Sandor, Z. and Bredberg, A. (1995) Triple helix directed psoralen adducts induce a low frequency of recombination in an SV40 shuttle vector. Biochim. Biophys. Acta 1263, 235–240.

    PubMed  Google Scholar 

  38. Faruqi, A. F., Datta, H. J., Carroll, D., Seidman, M. M., and Glazer, P. M. (2000) Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol. Cell. Biol. 20, 990–1000.

    Article  CAS  PubMed  Google Scholar 

  39. Knauert, M. P., Kalish, J. M., Hegan, D. C., and Glazer, P. M. (2006) Triplex-Stimulated Intermolecular Recombination at a Single-Copy Genomic Target. Mol. Ther. 14, 392–400.

    Article  CAS  PubMed  Google Scholar 

  40. Knauert, M. P., Lloyd, J. A., Rogers, F. A., et al. (2005) Distance and affinity dependence of triplex-induced recombination. Biochemistry 44, 3856–3864.

    Article  CAS  PubMed  Google Scholar 

  41. Sazani, P., Kang, S. H., Maier, M. A., et al. (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res. 29, 3965–3974.

    CAS  PubMed  Google Scholar 

  42. Koppelhus, U., Awasthi, S. K., Zachar, V., Holst, H. U., Ebbesen, P., and Nielsen, P. E. (2002) Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev. 12, 51–63.

    Article  CAS  PubMed  Google Scholar 

  43. Egholm, M., Christensen, L., Dueholm, K. L., Buchardt, O., Coull, J., and Nielsen, P. E. (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 23, 217–222.

    Article  CAS  PubMed  Google Scholar 

  44. Diviacco, S., Rapozzi, V., Xodo, L., Helene, C., Quadrifoglio, F., and Giovannan-geli, C. (2001) Site-directed inhibition of DNA replication by triple helix formation. FASEB J. 15, 2660–2668.

    Article  CAS  PubMed  Google Scholar 

  45. Shahid, K. A., Majumdar, A., Alam, R., et al. (2006) Targeted cross-linking of the human beta-globin gene in living cells mediated by a triple helix forming oligonucleotide. Biochemistry 45, 1970–1978.

    Article  CAS  PubMed  Google Scholar 

  46. Orou, A., Fechner, B., Utermann, G., and Menzel, H. J. (1995) Allele-specific competitive blocker PCR: a one-step method with applicability to pool screening. Hum. Mutat. 6, 163–169.

    Article  CAS  PubMed  Google Scholar 

  47. Parsons, B. L., McKinzie, P. B., and Heflich, R. H. (2005) Allele-specific competitive blocker-PCR detection of rare base substitution. Methods Mol. Biol. 291, 235–245.

    CAS  PubMed  Google Scholar 

  48. Hansen, G. I., Bentin, T., Larsen, H. J., and Nielsen, P. E. (2001) Structural isomers of bis-PNA bound to a target in duplex DNA. J. Mol. Biol. 307, 67–74.

    Article  CAS  PubMed  Google Scholar 

  49. Gorman, M. and Glazer, P. M. (2001) Directed gene modification via triple helix formation. Curr. Mol. Med. 1, 391–399; with permission from Bentham Science Publishers Ltd. (Reprinted).

    Article  CAS  PubMed  Google Scholar 

  50. Knauert, M. P., Kalish, J. M., Hegan, D. C., and Glazer, P. M. (2006) Triplex-stimulated intermolecular recombination at a single-copy genomic target. Mol. Ther. 14, 392–400; with permission from Elsevier (Reprinted).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Schleifman, E.B., Chin, J.Y., Glazer, P.M. (2008). Triplex-Mediated Gene Modification. In: Davis, G.D., Kayser, K.J. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 435. Humana Press. https://doi.org/10.1007/978-1-59745-232-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-232-8_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-899-7

  • Online ISBN: 978-1-59745-232-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics