Skip to main content

Conversion of Putrescine to γ-Aminobutyric Acid, an Essential Pathway for Root Formation by Poplar Shoots In Vitro

  • Chapter

Part of the book series: Basic Life Sciences ((BLSC,volume 65))

Abstract

Polyamines have been involved in the control of the inductive phase of rooting in Nicotiana tabacum (Malfatti et al. 1983, Kaur-Sawhney et al. 1988, Altamura et al. 1991, Altamura 1994), Vigna radiata (Friedman et al. 1985), Prunus avium (Biondi et al. 1990) and Beta vulgaris (Biondi et al. 1993). We have come to the same conclusions for poplar shoots raised in vitro (Hausman et al. 1994, 1995a, b) and also for walnut shoots (Heloir et al. 1996). On the contrary, spermidine and spermine inhibited the induction of the rooting process in the same material. Such specific effects of the most prevalent polyamines in plants, i.e. putrescine, spermidine and spermine, were also found by other laboratories (Tiburcio et al. 1989, Altamura et al. 1991, Rey et al. 1994). In poplar shoots, putrescine was suggested to act through its catabolic pathway (Hausman et al. 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altamura, M.M. 1994. Rhizogenesis and polyamines in tobacco thin cell layers. Adv. Hort. Sci. 8: 33–35.

    Google Scholar 

  • Altamura, M.M., Torrigiani, P., Capitani, F., Scaramagli, S., & Bagni, N. 1991. De novo root formation in tobacco thin layers is affected by inhibition of polyamines biosynthesis. J. Exp. Bot. 42: 1575–1582.

    Article  CAS  Google Scholar 

  • Biondi, S., Diaz, T., Iglesias, I., Gamberini, G., & Bagni, N. 1990. Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol. Plant. 78: 474–483.

    Article  Google Scholar 

  • Biondi, S., Hagège, D., Rossini, P., & Bagni, N. 1993. Polyamine metabolism and ethylene biosynthesis in normal and habituated sugar beet callus. Physiol. Plant. 89: 699–706.

    Article  CAS  Google Scholar 

  • Blakesley, D. 1994. Auxin metabolism and adventitious root initiation. In Biology of Adventitious Root Formation (T.D. Davis and B.E. Haissig, eds), pp. 143–154. Plenum Press, New York.

    Google Scholar 

  • Bown, A. & Shelp, B.J. 1989. The metabolism and physiological roles of 4-aminobutyric acid. Biochem. Life Sci. Adv. 8:21–25.

    Google Scholar 

  • Davies, P.J., Rastogi, R. & Law, D.M. 1990. Polyamines and their metabolism in ripening tomato fruit. In Polyamines and Ethylene: Biochemistry, Physiology and Interactions (H.E. Flores, R.N. Arteca, and J.C Shannon, eds.), pp. 112–125. American Society of Plant Physiologists.

    Google Scholar 

  • Evans, P.T. & Malmberg, R.L. 1989. Do polyamines have roles in plant development? Annual Review of Plant Physiology. 40: 235–269.

    Article  CAS  Google Scholar 

  • Flores, H.E. & Filner, P. 1985. Polyamine catabolism in higher plants: characterization of pyrroline dehydrogenase. Plant Growth Regul. 3: 277–291.

    Article  CAS  Google Scholar 

  • Friedman, R., Altman, A. & Bachrach, U. 1985. Polyamines and root formation in mung bean hypocotyl cuttings. II. Incorporation of precursors into polyamines. Plant Physiol. 79: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, T., Kevers, C, Hausman, J.F. & Ripetti, V. 1994. Peroxidase activity and endogenous free auxin during adventitious root formation. In Physiology, Growth and Development of Plants in Culture (P.J. Lumsden, J.R. Nicholas, and W.J. Davies, eds.), pp.289–298. Kluwer Academic Publishers, The Netherlands.

    Chapter  Google Scholar 

  • Hausman, J.F., Kevers, C, & Gaspar, T. 1994. Involvement of putrescine in the inductive rooting phase of poplar shoots raised in vitro. Physiol. Plant. 92: 201–203.

    Article  CAS  Google Scholar 

  • Hausman, J.F., Kevers, C, & Gaspar, T. 1995a. Putrescine control of peroxidase activity in the inductive phase of rooting in poplar shoots in vitro, and the adversary effect of spermidine. J. Plant Physiol. 146: 681–685.

    Article  CAS  Google Scholar 

  • Hausman, J.F., Kevers, C, & Gaspar, T. 1995b. Auxin-polyamine interaction in the control of the rooting inductive phase of poplar shoots in vitro. Plant Sci. 110: 63–71.

    Article  CAS  Google Scholar 

  • Heloir, M.C., Kevers, C, Hausman, J.F. & Gaspar, T. 1996. Changes in the levels of auxins and polyamines in the cause of rooting of walnut shoots in vitro. Tree Physiol. 16: 515–519.

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney, R., Tiburcio, A.F. & Galston, A.W. 1988. Spermidine and flower bud differentiation in thin-layer expiants of tobacco. Planta. 173: 282–284.

    Article  CAS  Google Scholar 

  • Kuehn, G.D., Rodriguez-Garay, B., Bagga, S., & Phillipps, G.C. 1990. Novel occurrence of uncommon polyamines in higher plants. Plant Physiol. 94: 855–857.

    Article  PubMed  CAS  Google Scholar 

  • Malfatti, H., Vallée, J.C, Perdizet, E., Carre, M. & Martin C. 1983. Acides aminés libres d’expiants foliaires de Nicotiana tabacum cultivés in vitro sur des milieux induisant la rhizogenèse ou la caulogenèse. Physiol. Plant. 57: 492–498.

    Article  CAS  Google Scholar 

  • Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15:473–497.

    Article  CAS  Google Scholar 

  • Rey, M., Diaz-Sala, C, & Rodriguez, R. 1994. Exogenous polyamines improve rooting of hazel microshoots. Plant Cell Tissue Org. Cult. 36: 303–308.

    Article  CAS  Google Scholar 

  • Shelp, B.J., Walton, CS., Snedden, W.A., Tuin, L.G., Oresnik, I.J., & Layzell, D.B. 1995. GABA shunt in developing soybean seeds is associated with hypoxia. Physiol. Plant. 94: 219–228.

    Article  CAS  Google Scholar 

  • Smith, T.A. 1985. Polyamines. Annual Review of Plant Physiology. 36: 117–143.

    Article  CAS  Google Scholar 

  • Tiburcio, A.F., Gendy, CA., & Tran Thanh Van, K. 1989. Morphogenesis in tobacco subepidermal cells: putrescine as marker of root differentiation. Plant Cell Tissue Org. Cult. 19: 43–54.

    Article  CAS  Google Scholar 

  • Walter, H.J. & Geuns, J.M. 1987. High speed HPLC analysis of polyamines in plant tissues. Plant Physiol. 83: 232–234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hausman, JF., Evers, D., Kevers, C., Gaspar, T. (1997). Conversion of Putrescine to γ-Aminobutyric Acid, an Essential Pathway for Root Formation by Poplar Shoots In Vitro . In: Altman, A., Waisel, Y. (eds) Biology of Root Formation and Development. Basic Life Sciences, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5403-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5403-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7467-1

  • Online ISBN: 978-1-4615-5403-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics