Skip to main content

Part of the book series: Methods in Bioengineering ((MB))

Abstract

Every year millions of people suffer tissue loss or end-stage organ failure (Langer and Vacanti 1993). Total national US health care costs for these patients exceed 400 billion dollars per year. Currently over 8 million surgical procedures requiring 40 to 90 million hospital days are performed annually in the United States to treat these disorders. Options such as tissue transplantation and surgical intervention are severely limited by critical donor shortages, long-term morbidity, and mortality. Stem cells could be used as a source of donor tissue in transplants and elective surgeries. They could also be used in the treatment of a wide variety of diseases, congenital malformations, and genetic disorders. One especially appropriate application for stem cells involves the treatment of tissue losses, which requires that large numbers of cells be available for transplantation. Similar issues arise with respect to providing sufficient numbers of cells for gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ailhaud, G., Grimaldi, P., and Negrel, R. 1992. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12:207–34.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, G. and Greer, G.B. 1971. Homotransplantation of isolated epiphyseal and articular chondrocytes into joint surfaces. Nature 230:385–8.

    Article  PubMed  CAS  Google Scholar 

  • Beresford, J.N. 1989. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop Rel Res 240:270–80.

    Google Scholar 

  • Breinan, H.A., Minas, T., Hsu, H.-R., Nehrer, S., Sledge, C.B., and Spector, M. 1997. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 79:1439–51.

    PubMed  CAS  Google Scholar 

  • Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte implantation. N Eng J Med 331(4):889–95.

    Article  CAS  Google Scholar 

  • Brittberg, M., Nilsson, A., Lindahl, A., Ohlsson, C., and Peterson, L. 1996. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Rel Res 326:270–83.

    Article  Google Scholar 

  • Campion, D.R. 1984. The muscle satellite cell: a review. Int Rev Cytol 87:225–51.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A.I. 1991. Mesenchymal stem cells. J Orthop Res 9:641–50.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A.I., Elyaderani, M., Mochizuki, Y., Wakitani, S., and Goldberg, V. 1997. Principles of cartilage repair and regeneration. Clin Orthop Rel Res 342:254–69.

    Article  Google Scholar 

  • Chesterman, P.J. and Smith, A.U. 1968. Homotransplantation of articular cartilage and isolated chondrocytes. J Bone Joint Surg Br 50:184–97.

    PubMed  CAS  Google Scholar 

  • Cruess, R.L. 1982. The musculoskeletal system embryology, biochemistry, and physiology. New York: Churchill Livingston.

    Google Scholar 

  • Davis, E., Williams, J.T., IV, Souza, J., Southerland, S.S., Warejka, D., Young, H.E., and Lucas, P.A. 1995. Cells isolated from adult rat marrow are capable of differentiating into several mesenchymal phenotypes in culture. FASEB J 9:A590.

    Google Scholar 

  • Dixon, K., Murphy, R.W., Southerland, S.S., Young, H.E., Dalton, M.L., and Lucas, P.A. 1996. Recombinant human bone morphogenetic proteins-2 and-4 (rhBMP-2 and rhBMP-4) induce several mesenchymal phenotypes in culture. Wound Rep Reg 4:374–80.

    Article  CAS  Google Scholar 

  • Frenkel, S.R., Toolan, B., Menche, D., Pitman, M.I., and Pachence, J.M. 1997. Chondrocyte transplantation using collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br 79:831–6.

    Article  PubMed  CAS  Google Scholar 

  • Garret, J.C. 1986. Treatment of osteochondral defects of the distal femur with fresh osteochondral allografts: a preliminary report. Arthroscopy 2:222–6.

    Article  Google Scholar 

  • Grande, D.A., Pitman, M.I., Peterson, L., Menche, D., and Klein, M. 1989. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte implantation. J Orthop Res 7:208–18.

    Article  PubMed  CAS  Google Scholar 

  • Grande, D.A., Southerland, S.S., Manji, R., Pate, D.W., Schwartz, R.E., and Lucas, P.A. 1995. Repair of articular cartilage defect using mesenchymal stem cells. J Tiss Eng 1:345–53.

    Article  CAS  Google Scholar 

  • Green, W.T. 1977. Articular cartilage repair: behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clin Orthop 124:237–50.

    PubMed  CAS  Google Scholar 

  • Grounds, M.D., Garrett, K.L., Lai, M.C., Wright, W.E., and Beilharz, M.W. 1992. Identification of muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tiss Res 267:99–104.

    Article  CAS  Google Scholar 

  • Hayflick, L. 1965. The limited in vitro lifetime of human diploid cell strains. Exper Cell Res 37:614–36.

    Article  CAS  Google Scholar 

  • Homminga, G.N., Bulstra, S.K., Bouwmeester, P.S.M., and Van Der Linden, A.J. 1990. Perichondrial grafting for cartilage lesions of the knee. J Bone Joint Surg Br 72:1003–7.

    PubMed  CAS  Google Scholar 

  • Kawabe, N. and Yoshinato, M. 1991. The repair of full thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocytes. Clin Orthop 268:279–93.

    PubMed  Google Scholar 

  • Kishimoto, T., Kikutani, H., Borne, AEGKrvd, Goyert, S.M., Mason, D., Miyasaka, M., Moretta, L., Okumura, K., Shaw, S., Springer, T., Sugamura, K., and Zola, H. 1997. Leucocyte typing VI, white cell differentiation antigens. Hamden: Garland Publishing.

    Google Scholar 

  • Kolettas, E., Buluwela, L., Bayliss, M., and Muir, H. 1995. Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. J Cell Sci 108:1991–9.

    PubMed  CAS  Google Scholar 

  • Langer, R. and Vacanti, J.P. 1993. Tissue engineering. Science 260:920–6.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, P.A., Calcutt, A.F., Ossi, P., Young, H.E., and Southerland, S.S. 1993. Mesenchymal stem cells from granulation tissue. J Cell Biochem 17E:122.

    Google Scholar 

  • Lucas, P.A., Calcutt, A.F., Southerland, S.S., Warejcka, D., and Young, H.E. 1995. A population of cells resident within embryonic and newborn rat skeletal muscle is capable of differentiating into multiple mesodermal phenotypes. Wound Rep Reg 3:457–68.

    Article  Google Scholar 

  • Lucas, P.A., Grande, D.A., and Young, H.E. 1996a. Use of pluripotent mesenchymal stem cells for tissue repair. Program of the Keystone Symposia on Tissue Engineering and Wound Repair in Context. 1:15.

    Google Scholar 

  • Lucas, P.A., Warejcka, D.J., Zhang, L.-M., Newman, W.H., and Young, H.E. 1996b. Effect of rat mesenchymal stem cells on the development of abdominal adhesions after surgery. J Surg Res 62:229–32.

    Article  CAS  Google Scholar 

  • Lucas, P.A., Young, H.E., and Putnam, L.S. 1991. Quantitation of chondrogenesis in culture using Alcec blue staining. FASEB J. 5(4).

    Google Scholar 

  • Mankin, H.J. 1982. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64:460–6.

    PubMed  CAS  Google Scholar 

  • Matsusue, Y., Yamamuro, T., and Hama, H. 1993. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9:318–21.

    Article  PubMed  CAS  Google Scholar 

  • Mauro, A. 1961. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–8.

    Article  PubMed  CAS  Google Scholar 

  • McDermott, A.G.P., Langer, F., Pritzker, K.P.H., and Gross, A.E. 1985. Fresh small fragment osteochondral allografts. Long term follow-up study on first 100 cases. Clin Orthop 197:96–102.

    PubMed  Google Scholar 

  • McGuire, W.P. 1998. High dose chemotherapy and autologous bone marrow or stem cell reconstitution for solid tumors. Curr Probl Cancer 22:135–77.

    Article  PubMed  CAS  Google Scholar 

  • Minas, T. and Nehrer, S. 1997. Current concepts in the treatment of articular cartilage defects. Orthopedics 20(6):525–38.

    PubMed  CAS  Google Scholar 

  • Moskalewski, S. 1991. Transplantation of isolated chondrocytes. Clin Orthop 272:16–20.

    PubMed  Google Scholar 

  • O’Driscoll, S.W., Keeley, F.W., and Salter, R.B. 1988. Durability of regenerated articular cartilage produced by free autologous periosteal grafts in major full thickness defects in joint surfaces under the influence of continuous passive motion. J Bone Joint Surg Am 70:595–606.

    PubMed  Google Scholar 

  • Owen, M. 1988. Marrow stromal cells. J Cell Sci Suppl 10:63–76.

    PubMed  CAS  Google Scholar 

  • Palis, J. and Segel, G.B. 1998. Developmental biology of erythropoiesis. Blood Rev 12:106–14.

    Article  PubMed  CAS  Google Scholar 

  • Pate, D.W., Southerland, S.S., Grande, D.A., Young, H.E., and Lucas, P.A. 1993. Isolation and differentiation of mesenchymal stem cells from rabbit muscle. Surgical Forum, XLIV:587–9.

    Google Scholar 

  • Ratajczak, M.Z., Pletcher, C.H., Marlicz, W., Machlinski, B., Moore, J., Wasik, M., Ratajczak, J., and Gewirtz, A.M. 1998. CD34+, kit+, rhodamine 123(low) phenotype identifies a marrow cell population highly enriched for human hematopoietic stem cells. Leukemia 12:942–50.

    Article  PubMed  CAS  Google Scholar 

  • Ritsila, V.A., Santavira, S., Alhopuro, S., Poussa, M., Jaroma, H., Rubak, J.M., Eskola, A., Hoikka, V., Snellman, O., and Osterman, K. 1994. Periosteal and perichondrial grafting in reconstructive surgery. Clin Orthop 302:259–65.

    PubMed  Google Scholar 

  • Rogers, J.J., Adkison, L.R., Black, A.C., Jr, Lucas, P.A., and Young, H.E. 1995. Differentiation factors induce expression of muscle, fat, cartilage, and bone in a clone of mouse pluripotent mesenchymal stem cells. Amer Surg 61(3): 1–6.

    Google Scholar 

  • Rubak, J.M. 1982. Reconstruction of articular cartilage defects with free periosteal grafts. Acta Orthop Scand 53:175–9.

    Article  PubMed  CAS  Google Scholar 

  • Skoog, T. and Johansson, S.H. 1976. The formation of articular catilage from free perichondrial grafts. Plast Reconstr Surg 57:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Vierck, J.L., McNamara, J.P., and Dodson, M.V. 1996. Proliferation and differentiation of progeny of ovine unilocular fat cells (adipofibroblasts). In Vitro Cell Dev Biol—Animal 32:564–72.

    Article  CAS  Google Scholar 

  • Wakitani S., Goto, T., Pineda, S.J., Young, R.G., Mansour, J.M., Caplan, A.I., and Goldberg, V.M. 1994. Mesenchymal cell based repair of large, full thickness defects of articular cartilage. J Bone Joint Surg Am 76:579–92.

    PubMed  CAS  Google Scholar 

  • Wakitani, S., Kimura, T., Hirooka, A., Ochi, T., Yoneda, M., Yasui, N., Owaki, H., and Ono, K. 1989. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br 71:74–80.

    PubMed  CAS  Google Scholar 

  • Warejcka, D.J., Harvey, R., Taylor, B.J., Young, H.E., and Lucas, P.A. 1996. A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. J Surg Res 62:233–42.

    Article  PubMed  CAS  Google Scholar 

  • Young, H.E. 1983. A Temporal Examination of Glycoconjugates During the Initiation Phase of Limb Regeneration in Adult Ambystoma. Lubbock: Texas Tech University Library.

    Google Scholar 

  • Young, H.E., Blake, L.W., Floyd, J.A., and Black, A.C., Jr. 1998. Progenitor stem cells and pluripotent stem cells as a comparison/contrast bioassay for identifying proliferative factors, progression factors, inhibitory factors, and inductive factors for tissue restoration. Unpublished raw data.

    Google Scholar 

  • Young, H.E., Carrino, D.A., and Caplan, A.I. 1989. Histochemical analysis of newly synthesized and resident sulfated glycosaminoglycans during musculogenesis in the embryonic chick leg. J Morph 201:85–103.

    Article  PubMed  CAS  Google Scholar 

  • Young, H.E., Ceballos, E.M., Smith, J.C., Lucas, P.A., and Morrison, D.C. 1992. Isolation of embryonic chick myosatellite and pluripotent stem cells. J Tiss Cult Meth 14:85–92.

    Article  Google Scholar 

  • Young, H.E., Ceballos, E.M., Smith, J.C., Mancini, M.L., Wright, R.P., Ragan, B.L., Bushell, I., and Lucas, P.A. 1993. Pluripotent mesenchymal stem cells reside within avian connective tissue matrices. In Vitro Cell Dev Biol 29A: 723–36.

    Article  CAS  Google Scholar 

  • Young, H.E., Dalley, B.K., and Markwald, R.R. 1989a. Effect of selected denervations on glycoconjugate composition and tissue morphology during the initiation phase of limb regeneration in adult Ambystoma. Anat Rec 223:231–41.

    Article  CAS  Google Scholar 

  • Young, H.E., Dalley, B.K., and Markwald, R.R. 1989b. Glycoconjugates in normal wound tissue matrices during the initiation phase of limb regeneration in adult Ambystoma. Anat Rec 223:223–30.

    Article  CAS  Google Scholar 

  • Young, H.E., Duplaa, C., Floyd, J.A, Hawkins, K., Thomas, K., Austin, T., Edwards, C., Couzzart, J., Lucas, P.A., Hudson, J., and Black, A.C., Jr. 2000. Postnatal epiblastic-like stem cells retain pluripotency after gene transfection. (submitted)

    Google Scholar 

  • Young, H.E., Duplaa, C., Hawkins, K., Floyd, J.A., Thomas, K., Austin, T., Edwards, C., Couzzart, J., Lucas, P.A., Hudson, J., and Black, A.C., Jr. 2000. Postnatal pluripotent mesenchymal stem cells retain pluripotency after gene transfection. (submitted)

    Google Scholar 

  • Young, H.E., Floyd, J.A., and Black, A.C., Jr. 1996b. Progenitor stem cell numbers decrease with increasing age of the individual, in contrast, pluripotent stem cell numbers remain constant regardless of age. Unpublished raw data.

    Google Scholar 

  • Young, H.E., Mancini, M.L., Wright, R.P., Smith, J.C., Black, A.C., Jr., Reagan, C.R., and Lucas, P.A. 1995. Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dynamics 202:137–44.

    Article  CAS  Google Scholar 

  • Young, H.E., Mancini, M.L., Wright, R.P., Smith, J.C., Black, A.C., Jr., Reagan, C.R., and Lucas, P.A. 1995b. Tissue-specific progenitor cells, non-tissue specific progenitor cells, and pluripotent stem cells reside within the connective tissue matrices of many organs. Unpublished raw data.

    Google Scholar 

  • Young, H.E., Morrison, D.C., Martin, J.D., and Lucas, P.A. 1991. Cryopreservation of embryonic chick myogenic lineage-committed stem cells. J Tiss Cult Meth 13:275–84.

    Article  Google Scholar 

  • Young, H.E., Rogers, J.J., Adkison, L.R., Lucas, P.A., and Black, A.C., Jr. 1998b. Muscle morphogenetic protein induces myogenic gene expression in Swiss-3T3 cells. Wound Rep Reg 6(6):534–54.

    Article  Google Scholar 

  • Young, H.E., Sippel, J., Putnam, L.S., Lucas, P.A., and Morrison, D.C. 1992. Enzyme linked immuno-culture assay. J Tiss Cult Meth 14:31–6.

    Article  Google Scholar 

  • Young, H.E., Steele, T., Bray, R.A., Detmer, K., Blake, L.W., Lucas, P.A., and Black, A.C., Jr. 1999. Human progenitor and pluripotent cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC Class-I. Proc Soc Exp Biol Med 221:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Young, H.E., Steele, T., Bray, R.A., Hudson, J., Floyd, J.A., Hawkins, K., Thomas, K., Austin, T., Edwards, C., Couzzart, J., Duenzl, M., Lucas, P.A., and Black, A.C., Jr. 2000. Mesenchymal stem cells derived from the connective tissues of postnatal humans display cluster differentiation markers CD34 and CD90. (submitted)

    Google Scholar 

  • Young, H.E., Wright, R.P., Mancini, M.L., Lucas, P.A., Reagan, C.R., and Black, A.C., Jr. 1998a. Bioactive factors affect proliferation and phenotypic expression in pluripotent and progenitor mesenchymal stem cells. Wound Repair and Regeneration 6(l):65–75.

    Article  Google Scholar 

  • Young, H.E., Young, T.M., Floyd, J.A., Reeves, M.L., Davis, K.H., Eaton, M.E., Hill, J.D., Mancini, G.J., Thomas, K., Austin, T., Edwards, C., Couzzart, J., Blake, L.W., Detmer, K., Lucas, P.A., Hudson, J., and Black, A.C., Jr. 2000. Clonogenic analysis reveals reserve stem cells in postnatal mammals. II. Pluripotent epiblastic-like stem cells, (submitted)

    Google Scholar 

  • Young, H.E., Young, T.M., Floyd, J.A., Reeves, M.L., Davis, K.H., Mancini, G.J, Eaton, M.E., Hill, J.D., Thomas, K., Austin, T., Edwards, C., Couzzart, J., Blake, L.W., Detmer, K., Lucas, P.A., Hudson, J., and Black, A.C., Jr. 2000. Clonogenic analysis reveals reserve stem cells in postnatal mammals. I. Pluripotent mesenchymal stem cells, (submitted)

    Google Scholar 

  • Young, H.E., Young, V.E., and Caplan, A.I. 1989. Comparison of fixatives for maximal retention of radiolabeled glycoconjugates for autoradiography, including use of sodium sulfate to release unincorporated [35S]sulfate. J Histochem Cytochem 37:223–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Birkhäuser Boston

About this chapter

Cite this chapter

Young, H.E. (2000). Stem Cells and Tissue Engineering. In: Huard, J., Fu, F.H. (eds) Gene Therapy and Tissue Engineering in Orthopaedic and Sports Medicine. Methods in Bioengineering. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2126-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2126-5_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7424-7

  • Online ISBN: 978-1-4612-2126-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics