Skip to main content

Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary

  • Conference paper
Book cover Seminar on Nonlinear Partial Differential Equations

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 2))

Abstract

This paper is concerned with the question of convergence of the nonstationary, incompressible Navier-Stokes flow u = u v to the Euler flow u as the viscosity v tends to zero. If the underlying space domain is all of Rm, the convergence has been proved by several authors under appropriate assumptions on the convergence of the data (initial condition and external force); see Golovkin [1] and McGrath [2] for m = 2 and all time, and Swann [3] and the author [4,5] for m = 3 and short time. The case m ⩾ 4 can be handled in the same way; in fact, the simple method given in [5] applies to any dimension. All these results refer to strong solutions (or even classical solutions, depending on the data) of the Navier-Stokes equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. K. Golovkin, Vanishing viscosity in Cauchy’s problem for hydronamics equations, Proc. Steklov Inst. Math. (English translation) 92 (1966), 33–53.

    Google Scholar 

  2. F. J. McGrath, Non-stationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal. 27 (1968), 329–348.

    Article  MathSciNet  Google Scholar 

  3. H. Swann, The convergence with vanishing viscosity of non-stationary Navier-Stokes flow to ideal flow in R3, Trans. Amer. Math. Soc. 157 (1971), 373–397.

    MathSciNet  MATH  Google Scholar 

  4. T. Kato, Non-stationary flows of viscous and ideal fluids in R3, J. Functional Anal. 9 (1972), 296–305.

    Article  MATH  Google Scholar 

  5. T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Lecture Notes In Math. 448, Springer 1975, 25–70.

    Article  Google Scholar 

  6. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), 193–248.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213–231.

    Article  MathSciNet  MATH  Google Scholar 

  8. O. A. Ladyzenskaya, The mathematical theory of viscous incompressible flow, Second English Edition, Gordon and Breach, New York 1969.

    Google Scholar 

  9. J. L. Lions, Quelque méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris 1969.

    Google Scholar 

  10. R. Temam, Navier-Stokes equations, North-Holland Amsterdam-New York-Oxford 1979.

    MATH  Google Scholar 

  11. J. Heywood, On uniqueness questions in the theory of viscous flow, Acta Math. 136 (1976), 61–102.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. 92 (1970), 102–163.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. P. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Functional Anal. 15 (1974), 341–363.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Anal. 20 (1975), 32–43.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Y. Lai, Studies on the Euler and the Navier-Stokes equations, Thesis, University of California, Berkeley, 1975.

    Google Scholar 

  16. T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rational Mech. Anal. 25 (1967), 188–200.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Kato and C. Y. Lai, Nonlinear evolution equations and the Euler flow, J. Functional Anal. (1984), to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this paper

Cite this paper

Kato, T. (1984). Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary. In: Chern, S.S. (eds) Seminar on Nonlinear Partial Differential Equations. Mathematical Sciences Research Institute Publications, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1110-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1110-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7013-3

  • Online ISBN: 978-1-4612-1110-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics