Skip to main content

Improvement of Photosynthetic CO2 Fixation at High Light Intensity Through Reduction of Chlorophyll Antenna Size

  • Chapter
Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

Abstract

At elevated light intensities (greater than ~200 μE/[m2·s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 μE/(m2·s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 μmol/[h·mg of chl]) than that of the wild type, DES15 (95 μmol/[h·mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenbaum, E. and Lee, J. W. (1998), in BioHydrogen, Zaborsky, O. R., ed., Plenum Press, NY, pp. 235–241.

    Google Scholar 

  2. Clayon, R. K. (1977), in Chlorophyll-Proteins, Reaction Centers, and Photosynthetic Membranes, Brookhaven Symposia in Biology Number 28, Olson, J. M. and Hind, G., eds., Brookhaven National Laboratory Associated Universities, Upton, NY, pp. 1–15.

    Google Scholar 

  3. Herron, H. A. and Mauzerall, D. (1972), Plant Physiol. 50, 141–148.

    Article  PubMed  CAS  Google Scholar 

  4. Melis, A., Neidhardt, J., and Benemann, J. R. (1999), J. Appl. Phycol. 10, 515–525.

    Article  Google Scholar 

  5. Galloway, R. and Mets, C. (1989), Biochim. Biophys. Acta 975, 66–71.

    Article  CAS  Google Scholar 

  6. Imbault, P., Wittemer, C., Johanningmeier, U., Jacobs, J. D., and Howell, S. H. (1988), Gene 73, 397–407.

    Article  PubMed  CAS  Google Scholar 

  7. Owens, T. G., Webb, S. P., Mets, L., Alberte, R. S., and Fleming, G. R. (1989), Biophys. J. 56, 95–106.

    Article  PubMed  CAS  Google Scholar 

  8. Sueoka, N. (1960), Proc. Natl Acad. Sei. USA 46, 83–91.

    Article  CAS  Google Scholar 

  9. Owens, T. G., Webb, S. P., Mets, L., Alberte, R. S., and Fleming, G. R. (1987), Proc. Nati Acad. Sci. USA 84, 1532–1536.

    Article  CAS  Google Scholar 

  10. Werst, M., Jia, Y., Mets, L., and Fleming, G. R. (1992), Biophys. J. 61, 868–878.

    Article  PubMed  CAS  Google Scholar 

  11. Nakajima, Y. and Ueda, R. (1999), J. Appl. Phycol. 11, 195–201.

    Article  Google Scholar 

  12. Krause, G. H. and Weis, E. (1991), Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349.

    Article  CAS  Google Scholar 

  13. Schmid, G., Price, J. M., and Gaffron, H. (1966), J. Microscopie 5, 205–212.

    Google Scholar 

  14. Miron, A. S., Gomez, A. C., Camacho, F. G., Grima, E. M., and Chisti, Y. (1999), J. Biotechnol. 70, 249–270.

    Article  Google Scholar 

  15. Grima, E. M., Sevilla, J. F., Perez, J. S., and Camacho, F. G., (1996), J. Biotechnol. 45, 59–69.

    Article  Google Scholar 

  16. Fernandez, F. A., Camacho, F. G., Perez, J. S., Sevilla, J. F., and Grima, E. M. (1998), Biotechnol. Bioeng. 58, 605–616.

    Article  PubMed  Google Scholar 

  17. Kok, B. (1953), Algal Culture: From Laboratory to Pilot Plant, Carnegie Institute, Washington, DC, pp. 63–75.

    Google Scholar 

  18. Janssen, M., Kuijpers, T. C., Veldhoen, B., Ternbach, M. B., Tramper, J., Mur, L. R., and Wijffels, R. H. (1999), J. Biotechnol. 70, 323–333.

    Article  CAS  Google Scholar 

  19. Watanabe, Y., Delanoue, J., and Hall, D. O. (1995), Biotechnol. Bioeng. 47, 261–269.

    Article  PubMed  CAS  Google Scholar 

  20. Watanabe, Y. and Hall, D. O. (1996), Energ. Convers. Manage. 37, 1321–1326.

    Article  CAS  Google Scholar 

  21. Zhang, K., Kurano, N., and Miyachi, S. (1999), Appl. Microbiol. Biotechnol. 52, 781–786.

    Article  CAS  Google Scholar 

  22. Myers, J. (1957), Encyclopedia of Chemical Technology, pp. 649–680.

    Google Scholar 

  23. Rorrer, G. L. and Mullikin, R. K. (1999), Chem. Eng. Sci. 54, 3153–3162.

    Article  CAS  Google Scholar 

  24. Lee, C. G. and Palsson, B. O. (1995), J. Ferment. Bioeng. 79, 257–263.

    Article  CAS  Google Scholar 

  25. Ogbonna, J. C., Soejima, T., and Tanaka, H. (1999), J. Biotechnol. 70, 289–297.

    Article  PubMed  CAS  Google Scholar 

  26. Fuentes, M. R., Sanchez, J. R., Sevilla, J. F., Fernandez, F A., Perez, J. S., and Grima, E. M. (1999), J. Biotechnol. 70, 271–288.

    Article  Google Scholar 

  27. Hirata, S., Taya, M., Tone, S., and Hayashitani, M. (1997), Kagaku Kogaku Ronbun 23, 331–341.

    Article  CAS  Google Scholar 

  28. Lee, Y. K., Ding, S. Y., Low, C. S., Chang, Y. C., and Chew, P. C. (1995), J. Appl. Phycol. 7, 47–51.

    Article  CAS  Google Scholar 

  29. Hu, Q., Guterman, H., and Richmond, A. (1996), Biotechnol. Bioeng. 51, 51–60.

    Article  PubMed  CAS  Google Scholar 

  30. Ratchford, I. J. and Fallowfield, H. J. (1992), J. Appl. Phycol. 4, 1–9.

    Article  Google Scholar 

  31. Borowitzka, M. A. (1999), J. Biotechnol. 70, 313–321.

    Article  CAS  Google Scholar 

  32. Mann, C. C. (1999), Science 283, 310–314.

    Article  CAS  Google Scholar 

  33. Mann, C. C. (1997), Science 277, 1038–1043.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, J.W., Mets, L., Greenbaum, E. (2002). Improvement of Photosynthetic CO2 Fixation at High Light Intensity Through Reduction of Chlorophyll Antenna Size. In: Finkelstein, M., McMillan, J.D., Davison, B.H. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0119-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0119-9_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6621-1

  • Online ISBN: 978-1-4612-0119-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics