Skip to main content

Fundamental Principles of Operation and Notes on Fabrication of Photonic Microresonators

  • Chapter
  • First Online:
Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

Abstract

Light confining microresonators based on evanescent wave propagation and whispering gallery (WG) modes have received much attention in the past decades, due to their conceptual similarity with their standing wave counterparts, improvements in fabrication technology, and their versatility in realizing various functions in telecommunications, sensing, measurement, and instrumentation. In this chapter the general concepts, design principles, and practical realizations of optical microresonators are briefly introduced. Using a simple but generic model, important design parameters such as the Q-factor, the finesse, the free spectral range, the intensity buildup, and the effects of loss are derived in general terms from basic principles. The discussion on cavity design is completed by reviewing several intrinsic properties of available material systems, such as the refractive index contrast, which is essential for field confinement, which limits the resonator geometrical size, contributes to material loss, and influences the nonlinear response. Finally, fabrication techniques of microring and WG resonators are also outlined, from the surface tension-mediated processes in silica microspheres and microtoroids to the wafer-based technologies such as deep ultraviolet (DUV), electron beam, and nanoimprint lithography. Some notable examples of fabricated resonators are discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forst, M., Niehusmann, J., et al. High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators. Opt. Lett. 32, 2046–2048 (2007)

    Article  Google Scholar 

  2. Almeida, V.R., Lipson, M. Optical bistability on a silicon chip. Opt. Lett. 29, 2387–2389 (2004)

    Article  Google Scholar 

  3. Dumeige, Y., Féron, P. Dispersive tristability in microring resonator. Phys. Rev. E. 72, 066609 (2005)

    Article  Google Scholar 

  4. Rabiei, P., Steier, W.H., et al. Polymer micro-ring filters and modulators. J. Lightw. Technol. 20, 1968–1975 (2002)

    Article  Google Scholar 

  5. Xu, Q., Schimdt, B. et al. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)

    Article  Google Scholar 

  6. Tazawa, H., Kuo, Y.-H., et al. Ring resonator-based electro-optic polymer traveling-wave modulator. J. Lightw. Technol. 24, 3514–3519 (2006)

    Article  Google Scholar 

  7. Ibrahim, T.A., Amarnath, K., et al. Photonic logic NOR gate based on two symmetric microring resonators. Opt. Lett. 29, 2779–2781 (2004)

    Article  Google Scholar 

  8. Ibrahim, T.A., Grover, R. et al. All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photon. Technol. Lett. 15, 1422–1424 (2003)

    Article  Google Scholar 

  9. Van, V., Ibrahim, T.A., et al. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quant. Electron. 8, 705–713 (2002)

    Article  MATH  Google Scholar 

  10. Chao, C.-Y., Guo, L.J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83, 1527–1529 (2003)

    Article  Google Scholar 

  11. Yalçin, K.C., Popat, J.C., et al. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quantum Electron. 12, 148–154 (2006)

    Article  Google Scholar 

  12. De Vos, K., Bartolozzi, I., et al. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15, 7610–7615 (2007)

    Article  Google Scholar 

  13. Xia, F., Sekaric, L., et al. Ultracompact optical buffers on a silicon chip. Nature 1, 65–71 (2007)

    Google Scholar 

  14. Poon, J.K.S., Scheuer, J., et al. Designing coupled-resonator optical delay lines. J. Opt. Soc. B 21, 1665–1673 (2004)

    Article  Google Scholar 

  15. Morichetti, F., Melloni, A., et al. A reconfigurable architecture for continuously variable optical slow-wave delay lines. Opt. Express 15, 17273–17282 (2007)

    Article  Google Scholar 

  16. Melloni, A., Morichetti, F., et al. Continuously tunable 1 byte delay in coupled-resonator optical waveguides. Opt. Lett. 33, 2389–2391 (2008)

    Article  Google Scholar 

  17. Morichetti, F., Melloni, A., et al. Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line. Opt. Express 16, 8395–8405 (2008)

    Article  Google Scholar 

  18. Khurgin, J.B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. J. Opt. Soc. Am. B 22, 1062–1074 (2005)

    Article  Google Scholar 

  19. Landobasa, Y.M., Chin, M.K. Optical buffer with higher delay-bandwidth product in a two-ring system. Opt. Express 16, 1796–1807 (2008)

    Article  Google Scholar 

  20. Hryniewicz, J.V., Absil, P.P., et al. Higher order filter response in coupled microring resonators. IEEE Photon. Technol. Lett. 12, 320–322 (2000)

    Article  Google Scholar 

  21. Melloni, A. Synthesis of a parallel-coupled ring-resonator filter. Opt. Lett. 26, 917–919 (2001)

    Article  Google Scholar 

  22. Little, B.E., Chu, S.T., et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004)

    Article  Google Scholar 

  23. Barwicz, T., Popović, M.A., et al. Fabrication of add-drop filters based on frequency-matched microring resonators. J. Lightw. Technol. 24, 2207–2218 (2006)

    Article  Google Scholar 

  24. Xia, F.N., Rooks, M., et al. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007)

    Article  Google Scholar 

  25. Xiao, S., Khan, M.H., et al. Silicon-on-Insulator microring add-drop filters with free spectral ranges over 30 nm. J. Lightw. Technol. 26, 228–236 (2008)

    Article  Google Scholar 

  26. Xiao, S., Khan, M.H., et al. A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low dispersion. Opt. Express 15, 14765–14771 (2007)

    Article  Google Scholar 

  27. Landobasa, Y.M., Dumon, P., et al. Boxlike filter response based on complementary photonic bandgap in two-dimensional microresonator arrays. Opt. Lett. 33, 2512–2514 (2008)

    Article  Google Scholar 

  28. Yang, L., Carmon, T., et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process. Appl. Phys. Lett. 86, 091114 (2005)

    Article  Google Scholar 

  29. Yang, L., Armani, D.K., et al. Fiber-coupled Erbium microlasers on a chip, Appl. Phys. Lett. 83, 825–826 (2003)

    Google Scholar 

  30. Lin, H.-B., Campillo, A.J. CW nonlinear optics in droplet microcavities displaying enhanced gain. Phys. Rev. Lett. 73, 2440–2443 (1994)

    Article  Google Scholar 

  31. Spillane, S., Kippenberg, T., et al. Ultralow-threshold Ra-man laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002)

    Article  Google Scholar 

  32. Min, B., Yang, L., et al. Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities. Appl. Phys. Lett. 87 181109 (2005)

    Article  Google Scholar 

  33. Kippenberg, T., Spillane, S., et al. Ultralow-threshold microcavity Raman laser on a microelectronic chip. Opt. Lett. 29, 1224–1227 (2004)

    Article  Google Scholar 

  34. Vahala, K.J. Optical microcavities. Nature 424, 839–846 (2003)

    Article  Google Scholar 

  35. Fabry, C., Pérot, A. Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle. Ann. Chim. Phys. 16, 115 (1899)

    MATH  Google Scholar 

  36. Armani, D.K., Kippenberg, T.J., et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)

    Article  Google Scholar 

  37. Joannopoulos, J.D., Meade R.D., et al. Photonic Crystals: Molding the Flow of Light Princeton University Press, Princeton (1995)

    Google Scholar 

  38. Vuckovic, J., Painter, O., et al. Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities. IEEE J. Quant. Electron. 35, 1168–1175 (1999)

    Article  Google Scholar 

  39. Painter, O., Vuckovic, J., et al. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. J. Opt. Soc. Am. B 16, 275–285 (1999)

    Article  Google Scholar 

  40. Xu, Y., Vuckovic, J., et al. Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity. J. Opt. Soc. Am. B 16, 465–474 (1999)

    Article  Google Scholar 

  41. Chin, M.K., Youtsey, C. et al. GaAs microcavity channel-dropping filter based on a race-track resonator. IEEE Photon. Technol. Lett. 11, 1620–1622 (1999)

    Article  Google Scholar 

  42. Soltani, M., Yegnanarayanan, S., et al. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Opt. Express 15, 4694–4704 (2007)

    Article  Google Scholar 

  43. Braginsky, V.B., Gorodetsky, M.L., et al. Quality-factor and nonlinear properties of optical whispering gallery modes. Phys. Lett. A, 137 393–397 (1989)

    Article  Google Scholar 

  44. Li, C., Zhou, L., et al. Silicon polygonal microdisk resonators. IEEE J. Sel. Top. Quant. Electron. 12, Part 2, 1438–1449 (2006)

    Article  Google Scholar 

  45. Scheuer, J., Green, W.M.J., et al. InGaAsP annular Bragg lasers: Theory, applications, and modal properties. IEEE J. Sel. Top. Quant. Electron. 11, 476–484 (2005)

    Article  Google Scholar 

  46. Scheuer, J., Yariv, A. Circular photonic crystal resonators. Phys. Rev. E 70, 036603 (2004)

    Article  Google Scholar 

  47. Gires, F., Tournois, P. Interferometre utilisable pour la compression d’impulsions lumineuses modulees en frequence. C. R. Acad. Sci. Paris 258, 6112–6115 (1964)

    Google Scholar 

  48. Townes, C.H., Schawlow, A.L. Microwave Spectroscopy. McGraw-Hill, New York (1955)

    Google Scholar 

  49. Gordon, J.P. Variable coupling reflection cavity for microwave spectroscopy. Rev. Sci. Instrum. 32, 658–661 (1961)

    Article  Google Scholar 

  50. Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett. 14, 483–485 (2002)

    Article  Google Scholar 

  51. Vassallo, C. Optical waveguide concepts. Elsevier, Amsterdam (1991)

    Google Scholar 

  52. Hiremath, K.R. Coupled mode theory based modeling and analysis of circular optical microresonators. PhD thesis, University of Twente, The Netherlands (2005)

    Google Scholar 

  53. Gorodetsky, M.L., Ilchenko, V.S. High-Q optical whispering gallery microresonators-precession approach for spherical mode analysis and emission patterns with prism couplers. Opt. Comm. 113, 133–143 (1994)

    Article  Google Scholar 

  54. Gorodetsky, M.L., Ilchenko, V.S. Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Amer. B 16, 147–154 (1999)

    Article  Google Scholar 

  55. Knight, J.C., Cheung, G., et al. Phase-matched excitation of whispering gallery mode resonances using a fiber taper. Opt. Lett. 22, 1129–1131 (1997)

    Article  Google Scholar 

  56. Little, B.E., Laine, J.P., et al. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. J. Lightwave. Technol. 17, 704–715 (1999)

    Article  Google Scholar 

  57. Cai, M., Painter, O., et al. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000)

    Article  Google Scholar 

  58. Cai, M., Vahala, K.J. Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration. Opt. Lett. 25, 260–262 (2000)

    Article  Google Scholar 

  59. Spillane, S.M., Kippenberg, T.J., et al. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)

    Article  Google Scholar 

  60. Barclay, P.E., Srinivasan, K., et al. Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities. J. Opt. Soc. Amer. B 20, 2274–2284 (2003)

    Article  Google Scholar 

  61. Srinivasan, K., Barclay, P.E., et al. Optical-fiber based measurement of an ultra small volume high-Q photonic crystal microcavity. Phys. Rev. B 70, 081306, (2004)

    Article  Google Scholar 

  62. Chin, M.K., Ho, S.T. Design and modeling of waveguide-coupled single-mode microring resonators. J. Lightw. Technol.,16, 1433–1446 (1998)

    Article  Google Scholar 

  63. Grover, R., Ibrahim, T.A., et al. Laterally coupled InP-based single-mode microracetrack notch filter. IEEE Photon. Technol. Lett. 15, 1082–1084 (2003)

    Article  Google Scholar 

  64. Popovic, M., Manolatou, C., et al. Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. Opt. Express 14, 1208–1222 (2006)

    Article  Google Scholar 

  65. Heiblum, M., Harris, J.H. Analysis of curved optical waveguides by conformal transformation. IEEE. J. Quant. Electron. 11, 75–83 (1975)

    Article  Google Scholar 

  66. Xia, F., Sekaric, L., et al. Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators. Opt. Express 14, 3872–3886 (2006)

    Article  Google Scholar 

  67. Van, V., Absil, P.P., et al. Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model. J. Lightw. Technol. 19, 1734–1739 (2001)

    Article  Google Scholar 

  68. Xu, Q., Fattal, D., et al. Silicon microring resonators with 1.5-μm radius. Opt. Express 16, 4309–4315 (2008)

    Article  Google Scholar 

  69. Tien, P.K. Light waves in thin films and integrated optics. Appl. Opt. 10, 2395–2413 (1971)

    Article  Google Scholar 

  70. Lacey, J.P.R., Payne, F.P. Radiation loss from planar waveguides with random wall imperfections. IEE Proceed. 137, 282–288. (1990)

    Google Scholar 

  71. Lipson, M. Guiding, modulating, and emitting light on silicon–Challenges and opportunities. J. Lightw. Technol. 23, 4222–4238 (2005)

    Article  Google Scholar 

  72. Lee, K.K., Lim, D.R., et al. Fabrication of ultralow loss Si/SiO2 waveguide by roughness reduction. Opt. Lett. 26, 1888–1890 (2001)

    Article  Google Scholar 

  73. Chao, C.Y., Guo, L.J. Reduction of surface scattering loss in polymer microrings using thermal-reflow technique. IEEE Photon. Technol. Lett. 16, 1498–1500 (2004)

    Article  Google Scholar 

  74. Bogaerts, W., Dumon, P., et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005)

    Article  Google Scholar 

  75. Soref, R.A., Bennett, B.R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987)

    Article  Google Scholar 

  76. Palik, E.D. Handbook of Optical Constants of Solids. Academic, New York (1998)

    Google Scholar 

  77. Gorodetsky, M.L., Savchenkov, A.A. Ultimate Q of optical microsphere resonators. Opt. Lett. 21, 453–455 (1996)

    Article  Google Scholar 

  78. Xu, Y., Han, M., et al. Second order parametric processes in nonlinear silica microspheres. Phys. Rev. Lett. 100, 163905 (2008)

    Article  Google Scholar 

  79. Polman, A., Min, B., et al. Ultralow-threshold erbium implanted toroidal microlaser on silicon. Appl. Phys. Lett. 84, 1037–1039 (2004)

    Article  Google Scholar 

  80. Lu, T., Yang, L., et al. On-chip green silica upconversion microlaser. Opt. Lett. 34, 482–484 (2009)

    Article  Google Scholar 

  81. Laine, J.P. Design and Applications of Optical Microsphere Resonators. PhD Thesis, Helsinski University of Technology, Finland (2003)

    Google Scholar 

  82. Niehusmann, J., Vörckel, A., et al. Ultrahigh-quality-factor silicon-on-insulator microring resonator, Opt. Lett. 29, 2861–2863 (2004)

    Google Scholar 

  83. Ikeda, K., Saperstein, R. E., et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 16, 12987–12994 (2008)

    Article  Google Scholar 

  84. Melloni, A. Costa, R., et al. Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems. Opt. Lett. 28, 1567–1569 (2003)

    Article  Google Scholar 

  85. Melloni, A. Morichetti, F., et al. Progress in large integration scale circuits in SiON Technology. We. C1.1, 223–226, ICTON 2007.

    Google Scholar 

  86. Duchesne, D., Ferrera, M., et al. High performance, low-loss nonlinear integrated glass waveguides. PIERS Proceedings, 1301–1304 (2009)

    Google Scholar 

  87. Englund, D., Faraon, A., et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007)

    Article  Google Scholar 

  88. Chin, M.K., Lee, C.W., et al. High-index contrast waveguides and devices. Appl. Opt. 44, 3077–3086 (2005)

    Article  Google Scholar 

  89. Dupont, S., Beaurain, A., et al. Low-loss InGaAsP/InP submicron optical waveguides fabricated by ICP etching. Electron. Lett. 40, 865–866 (2004)

    Article  Google Scholar 

  90. Huang, Y., Poon, J.K.S., et al. Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators. Appl. Phys. Lett. 87, 071108 (2005)

    Article  Google Scholar 

  91. Huang, Y.Y., Paloczi, G.T., et al. Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography. J. Phys. Chem. B 108, 8606–8613 (2004)

    Article  Google Scholar 

  92. Poon, J.K.S., Zhu, L., et al. Polymer microring coupled-resonator optical waveguide. J. Lightw. Technol. 24, 1843–1849 (2006)

    Article  Google Scholar 

  93. Chao, C.Y., Guo, L.J. Polymer microring resonators fabricated by nanoimprint technique, J. Vac. Sci. Technol. B 20, 2862–2866 (2002)

    Article  Google Scholar 

  94. Matsko, A.B., Ilchenko, V.S. Optical resonators with whispering gallery modes –Part 1: Basics. IEEE J. Sel. Top. Quant. Electron. 12, 3–14 (2006)

    Article  Google Scholar 

  95. Kippenberg, T.J., Spillane, S.M., et al. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities. IEEE J. Sel. Top. Quant. Electron. 10, 1219–1228 (2004)

    Article  Google Scholar 

  96. Benson, T.M., Boriskina, S.V., et al. Micro-optical resonators for microlasers and integrated optoelectronics. In: Janz, S., Ctyrocky J., Tanev, S. (eds) Frontiers in Planar Lightwave Circuit Technology, pp. 39–70. Springer, Netherlands (2005)

    Google Scholar 

  97. See Oxford Instruments (http://www.oxinst.com)

    Article  Google Scholar 

  98. Settle, M., Salib, M., et al.: Low loss silicon on insulator photonic crystal waveguides made by 193 nm optical lithography. Opt. Express 14, 2440–2445 (2006)

    Article  Google Scholar 

  99. Wang, C.-X., Xu, X.-S., et al. Light propagation characteristics of photonic crystal wave guide based on SOI materials at different polarized states. Chin. Phys. Lett. 23, 2472–2475 (2006)

    Article  Google Scholar 

  100. Priem, G., Dumon, P., et al. Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures. Opt. Express 13, 9623–9628 (2005)

    Article  Google Scholar 

  101. Xiao, S.J., Khan, M.H., et al. Compact silicon microring resonators with ultra-low propagation loss in the C band. Opt. Express 15, 14467–14475 (2007)

    Article  Google Scholar 

  102. Chin, M.K., Youtsey, C., et al. GaAs microcavity channel-dropping filter based on a race-track resonator. IEEE Photon. Technol. Lett. 11, 1620–1622 (1999)

    Article  Google Scholar 

  103. Guo, L.J. Recent progress in nanoimprint technology and its applications. J. Phys. D 37, R123–R141 (2004)

    Article  Google Scholar 

  104. Plachetka, U., Koo, N., et al. Fabrication of photonic ring resonator device in silicon wave guide technology using soft UV-Nanoimprint lithography. IEEE Photon. Technol. Lett. 20, 490–492 (2008)

    Article  Google Scholar 

  105. Poon, J.K.S., Huang, Y.Y., et al. Soft lithography replica molding of critically coupled polymer microring resonators. IEEE Photon. Technol. Lett. 16, 2496–2498 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the partial support from Academic Research Fund (ARC16/07-T2061204RS) and National Research Foundation (NRF-G-CRP 2007-01). LYMT wishes to dedicate this chapter to the late Prof. Chin Mee Koy who had been a good mentor, friend, and advisor

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Landobasa Y.M. Tobing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Tobing, L.Y., Dumon, P. (2010). Fundamental Principles of Operation and Notes on Fabrication of Photonic Microresonators. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_1

Download citation

Publish with us

Policies and ethics