Skip to main content

Structural, Mechanical, and Superconducting Properties of Clathrates

  • Chapter
  • First Online:

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 3))

Abstract

Clathrates are superhard cagelike structures with sp3 bonding that have been up to now synthesized for silicon. There is however some evidence of a carbon based counterpart in meteorites. If realized, carbon clathrates could on the one hand provide a material harder than diamond and on the other hand offer the possibility for selective doping and superconducting properties by intercalation. In this chapter all these aspects are thoroughly discussed by means of ab initio calculations based on density functional theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Powell HM (1948) J Chem Soc 1:61

    Google Scholar 

  2. Pauling L, Marsh RE (1952) Proc Natl Acad Sci 36:112

    Google Scholar 

  3. Davy H (1811) Philos Trans R Soc Lond 101:30

    Google Scholar 

  4. Faraday M (1823) Quart J Sci Lit Arts 15:71

    Google Scholar 

  5. Sloan ED Jr (1998) Clathrate hydrates of natural gases, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  6. Dickens GR, Paull CK, Wallace P (1997) Nature 385:426428

    Google Scholar 

  7. Cros C, Pouchard M, Hagenmuller P (1965) C R Acad Sci 260:4764

    CAS  Google Scholar 

  8. Kasper JS, Hagenmuller P, Pouchard M, Cros C (1965) Science 150:1713

    CAS  Google Scholar 

  9. McMillan PF (2002) Nat Mater 1:19

    CAS  Google Scholar 

  10. Kaczmarski M, Bedoya-Martinez ON, Hernández ER (2005) Phys Rev Lett 94:095701

    CAS  Google Scholar 

  11. Benedek G, Bernasconi M, Gambirasio A (2003) Phys Stat Sol (b) 237:296

    CAS  Google Scholar 

  12. Wells AF (1977) Three-dimensional nets and polyhedra. Wiley, New York

    Google Scholar 

  13. Williams R (1979) The geometrical foundation of natural structure. Dover, New York

    Google Scholar 

  14. Benedek G, Colombo L (1996) Mater Sci Forum 232:247

    CAS  Google Scholar 

  15. Benedek G, Colombo L, Gaito S, Serra S (1997) In: Paoletti A, Tucciarone A (eds) The physics of diamond. IOS Press, Amsterdam, pp 575–598

    Google Scholar 

  16. Benedek G, Bernasconi M, Donadio D, Colombo L (2001) In: Benedek G, Milani P, Ralchenko VG (eds) Nanostructured carbon for advanced applications. Kluver, Dordrecht p 89

    Google Scholar 

  17. Alexandrov PS (1998) Combinatorial topology. Dover, New York

    Google Scholar 

  18. Ceulemans A, Fowler PW (1991) Nature 353:52

    Google Scholar 

  19. Benedek G, Galvani E, Sanguinetti S, Serra S (1995) Chem Phys Lett 244:339

    CAS  Google Scholar 

  20. Breza J, Kadlecikova M, Vojs M, Michalka M, Vesely M, Daniś T (2004) Microelectr J 35:709

    CAS  Google Scholar 

  21. Narayan J, Srivatsa AR, Peters M, Yokota S, Ravi Al KV (1988) Phys Lett 53:1823

    CAS  Google Scholar 

  22. Shevchenko V Ya, Madison AE (2006) Glass Phys Chem 32:118

    Google Scholar 

  23. Enyashin AN Ivanovskii AL (2007) Phys Sol St 49:392 [Russian original: (2007) Fiz Tverd Tela 49:378]

    CAS  Google Scholar 

  24. Pokropinny VV, Ivanovskii AL (2008) Rus Chem Rev 77:837

    Google Scholar 

  25. Hu S, Sun J, Du X, Tian F, Jiang L (2008) Diamond Rel Mater 17:142

    CAS  Google Scholar 

  26. Raty J-Y, Galli G, Bostedt C, van Buuren TW, Terminello LJ (2003) Phys Rev Lett 90:037401

    Google Scholar 

  27. Strong RT, Pickard CJ, Milman V, Thimm G, Winkler B (2004) Phys Rev B 70:045101

    Google Scholar 

  28. Aste T, Weaire D (1996) The pursuit of perfect packing. IoPP

    Google Scholar 

  29. Kelvin L (Sir William Thomson) (1887) Phil Mag 24:503

    Google Scholar 

  30. Weaire D, Phelan R (1994) Phil Mag Lett 69:107

    CAS  Google Scholar 

  31. Weaire D, Hutzler S (2001) The physics of foams. Oxford University Press; see also the review by de Gennes P-G (2001) Phys Today 54:54

    Google Scholar 

  32. Grason GM (2006) Phys Reports 433:1

    CAS  Google Scholar 

  33. Nester R, Vogel K, Blöchl PE (1993) Angew Chem 32:701

    Google Scholar 

  34. Adams GB, O’Keefe M, Demkov AA, Sankey OF, Huang Y (1994) Phys Rev B 49:8048

    CAS  Google Scholar 

  35. Saito S, Oshiyama A (1995) Phys Rev B 51:2628

    CAS  Google Scholar 

  36. Galvani E, Onida G, Serra S, Benedek G (1996) Phys Rev Lett 77:3573

    CAS  Google Scholar 

  37. Bernasconi M, Gaito S, Benedek G (2000) Phys Rev B 61:12689

    CAS  Google Scholar 

  38. Tersoff J (1988) Phys Rev B 37:6991; (1989) Phys Rev Lett 61:2879

    Google Scholar 

  39. Eklund PC, Rao AM (1999) Fullerene polymers and fullerene polymer composites. Springer, Berlin

    Google Scholar 

  40. Marques L, Mezouar M, Hodeau J-L, Nunez-Regueiro M, Serebryanaya NR, Ivdenko VA, Blank VD, Dubitsky GA (1999) Science 203:1720

    Google Scholar 

  41. Yamanaka S, Kubo A, Inumaru K, Kini NS, Inoue T, Irifune T (2006) Phys Rev Lett 96:76602

    Google Scholar 

  42. Chernotatonskii LA, Serebryanaya NR, Marvrin BN (2000) Chem Phys Lett 316:199

    Google Scholar 

  43. Blank VD, Buga SG, Dubistky GA, Serebryanaya NR, Popov MY, Sundqvist B (1998) Carbon 36:319

    CAS  Google Scholar 

  44. Okada S, Saito S, Oshiyama A (1999) Phys Rev Lett 83:1986

    CAS  Google Scholar 

  45. Berber S, Osawa E, Tománek D (2004) Phys Rev B 70:85417

    Google Scholar 

  46. Burgos E, Halac E, Weht R, Bonadeo H, Artacho E, Ordejón P (2000) Phys Rev Lett 85:2328

    CAS  Google Scholar 

  47. Zipoli F, Bernasconi M (2008) Phys Rev B 77:115432

    Google Scholar 

  48. Yang J, Tse JS, Tao Y, Iitaka T (2007) Angew Chem Int Ed 46:6275

    CAS  Google Scholar 

  49. Yang J, Tse JS, Tao Y, Iitaka T (2007) J Chem Phys 127:134906

    Google Scholar 

  50. Yamagami Y, Saito S (2009) Phys Rev B 79:045425

    Google Scholar 

  51. El Goresy A et al (2003) C R Geosci 335

    Google Scholar 

  52. Blank VD et al (1994) Phys Lett A 188:281

    CAS  Google Scholar 

  53. Brazhkin VV et al (1995) JETP Lett 62:350

    Google Scholar 

  54. Núnez-Regueiro M et al (1995) Phys Rev Lett 74:278

    Google Scholar 

  55. Blank VD et al (1995) Phys Lett A 205:208; Blank VD et al (1998) Diamond Related Mater 7:427

    CAS  Google Scholar 

  56. Liu AY, Cohen ML (1989) Science 245:841; Cohen ML (1985) Phys Rev B 32:7988

    CAS  Google Scholar 

  57. Teter DM (1998) MRS Bull 23:22

    CAS  Google Scholar 

  58. Gao F et al (2003) Phys Rev Lett 91:015502

    Google Scholar 

  59. Chacham H, Kleinman L (2000) Phys Rev Lett 85:4904

    CAS  Google Scholar 

  60. Telling RH, Pickard CJ, Payne MC, Field JE (2000) Phys Rev Lett 84:5160

    CAS  Google Scholar 

  61. Roundy D, Cohen ML (2001) Phys Rev B 64:212103

    Google Scholar 

  62. Frenkel J (1926) Z Phys 37:572; Kelly A, MacMillan NH (1986) Strong solids. Clarendon, Oxford

    Google Scholar 

  63. Gogotsi YG, Kailer A, Nickel KG (1999) Nature (London) 401:663

    CAS  Google Scholar 

  64. Blase X, Gillet P, San Miguel A, Mélinon P (2004) Phys Rev Lett 92:215505

    CAS  Google Scholar 

  65. Perottoni CA, da Jornada AH (2002) Phys Rev B 65:224208

    Google Scholar 

  66. Brazhkin VV, Lyapin AG, Popova SV (1998) J Appl Phys 84:219; Brazhkin VV, Lyapin AG, Hemley RJ (2002) Phil Mag A 82:231

    CAS  Google Scholar 

  67. Takashi H, Kaichi S, Michihiro K, Ryuichiro O (2005) Jpn J Appl Phys 44:3141-3146

    Google Scholar 

  68. Gryko J, McMillan PF, Marzke RF, Ramachandran GK, Patton D, Deb SK, Sankey OF (2000) Phys Rev B 62:R7707

    CAS  Google Scholar 

  69. Smelyanski VI, Tse JS (1997) Chem Phys Lett 264:459

    Google Scholar 

  70. Moriguchi K, Munetoh S, Shintani A (2000) Phys Rev B 62:7138

    CAS  Google Scholar 

  71. Blase X (2003) Phys Rev B 67:035211

    Google Scholar 

  72. Mélinon P, Kéghélian P, Blase X, Le Brusc J, Perez A, Reny E, Cros C, Pouchard M (1998) Phys Rev B 58:12590

    Google Scholar 

  73. Zhang SB, Wei S-H, Zunger A (2000) Phys Rev Lett 84:1232

    CAS  Google Scholar 

  74. Kawaji H, Horie H-O, Yamanaka S, Ishikawa M (1995) Phys Rev Lett 74:1427

    CAS  Google Scholar 

  75. Bobev S, Sevov SC (2000) J Solid State Chem 92:153

    Google Scholar 

  76. San Miguel A, Toulemonde P (2005) High Press Res 25:159

    CAS  Google Scholar 

  77. Reny E, Yamanaka S, Cros C, Pouchard M (2000) Chem Commun 2505–2506

    Google Scholar 

  78. Imai M, Nishida K, Kimura T, Yamada K (2002) J Alloy Compd 335:270

    CAS  Google Scholar 

  79. Herrmann RFW, Tanigaki K, Kuroshima S, Suematsu H (1998) Chem Phys Lett 283:29

    CAS  Google Scholar 

  80. Jaussaud N et al (2005) Inorg Chem 44:2210-2214

    CAS  Google Scholar 

  81. San-Miguel A et al (1999) Phys Rev Lett 83:5290

    CAS  Google Scholar 

  82. Ramachandran GK et al (2000) J Phys Condens Matter 12:4013

    CAS  Google Scholar 

  83. McMahon MI, Nelmes RJ (1993) Phys Rev B 47:8337; McMahon MI, Nelmes RJ, Wright NG, Allan DR (1994) Phys Rev B 50:739; Hu JZ, Merkle LD, Menoni CS, Spain IL (1986) Phys Rev B 34:4679

    CAS  Google Scholar 

  84. san Miguel A et al (2002) Phys Rev B 65:054109

    Google Scholar 

  85. Tse JS et al (2002) Phys Rev Lett 89:195507

    Google Scholar 

  86. Kume T et al (2003) Phys Rev Lett 90:155503

    Google Scholar 

  87. Machon D et al (2009) Phys Rev B 79:184101

    Google Scholar 

  88. Connétable D, Timoshevskii V, Artacho E, Blase X (2001) Phys Rev Lett 87:206405

    Google Scholar 

  89. Slack GA (1995) In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton, FL, p 401

    Google Scholar 

  90. Tse JS et al (2000) Phys Rev Lett 85:114

    CAS  Google Scholar 

  91. Nolas GS et al (1998) Appl Phys Lett 73:178

    CAS  Google Scholar 

  92. Slack G et al (1999) Phys Rev Lett 82:779

    Google Scholar 

  93. Sales BC, Chakoumakos BC, Jin R et al. (2001) Phys Rev B 63:245113

    Google Scholar 

  94. Dong JJ, Sankey OF, Myles CW (2001) Phys Rev Lett 86:2361

    CAS  Google Scholar 

  95. Christensen M et al. (2008) Nat Mater 7:811

    CAS  Google Scholar 

  96. Martin J et al (2006) J Appl Phys 99:044903; Nenghabi EN, Myles CW (2008) Phys Rev B 77:205203

    Google Scholar 

  97. Mott NF (1974) Metal-insulator transitions. Taylor and Francis, London

    Google Scholar 

  98. Connétable D, Timoshevskii V, Masenelli B, Beille J, Marcus J, Barbara B, Saitta AM, Rignanese G-M, Mélinon P, Yamanaka S, Blase X (2003) Phys Rev Lett 91:247001

    Google Scholar 

  99. Nesladek M (2005) Semicond Sci Technol 20:R19-R27

    CAS  Google Scholar 

  100. Collins AT (1993) In: Davies G (ed) Properties and growth of diamond. INSPEC, the Institution of Electrical Engineers, London, p 263

    Google Scholar 

  101. Fujimori N et al (1990) Mat Res Soc Symp Proc 162:23; Alexenko AE, Spitsyn BV (1992) Diamond Relat Mater 1:705; Koizumi S et al (1997) Appl Phys Lett 71:1065; Saito T et al. (1998) Jpn J Appl Phys Part 2, 37:L543; Nesládek N et al (1999) Phys Rev B 59:14852

    CAS  Google Scholar 

  102. Sakaguchi I et al (1999) Phys Rev B 60:2139

    Google Scholar 

  103. Fox BA et al (1995) Diamond Relat Mater 4:622; Yamanaka S et al (1998) Jpn J Appl Phys Part 2 37:L1129

    CAS  Google Scholar 

  104. Rey N, Munoz A, Rodriguez-Hernandez P, San-Miguel A (2008) J Phys Condes Matter 61:215218

    Google Scholar 

  105. Spagnolatti I, Bernasconi M, Benedek G (2003) Eur Phys J B 34:63

    CAS  Google Scholar 

  106. Zipoli F, Bernasconi M, Benedek G (2006) Phys Rev B 74:205408

    Google Scholar 

  107. Ekimov EA, Sidorov VA, Bauer ED, Melńik NN, Curro NJ, Thompson JD, Stishov SM (2004) Nature 428:542

    CAS  Google Scholar 

  108. Boeri L, Kortus J, Andersen OK (2004) Phys Rev Lett 93:237002

    Google Scholar 

  109. Lee K-W, Pickett WE (2004) Phys Rev Lett 93:237003

    Google Scholar 

  110. Lee K-W, Pickett WE (2006) Phys Rev B 73:75105

    Google Scholar 

  111. Yokoya T, Nakamura T, Matsushita T, Muro T, Takano Y, Nagao M, Takenouchi T, Kawarada H, Oguchi T (2005) Nature 438:647

    CAS  Google Scholar 

  112. Bustarret E et al (2006) Nature 444:465468

    Google Scholar 

  113. Ren ZA et al (2007) J Phys Soc Jap 76:103710

    Google Scholar 

  114. Blase X, Bustarret E, Chapelier C, Marcenat C (2009) Nat Mat 8:375

    CAS  Google Scholar 

  115. Cohen ML (1964) Phys Rev 134:A511-A521; ibid (1964) Rev Mod Phys 36:240243

    Google Scholar 

  116. Schooley JF, Hosler WR, Cohen ML (1964) Phys Rev Lett 12:474475; Schooley JF et al. (1965) Phys Rev Lett 14:305307

    Google Scholar 

  117. Hein RA, Gibson JW, Mazelsky R, Miller RC, Hulm JK (1964) Phys Rev Lett 12:320322

    Google Scholar 

  118. Solozhenko VL, Dubrovinskaia NA, Dubrovinsky LS (2004) Appl Phys Lett 85:1508-1510; Dubitskiy GA et al (2005) JETP Lett 81:260263

    CAS  Google Scholar 

  119. Solozhenko VL et al (2009) Phys Rev Lett 102:015506

    Google Scholar 

  120. Calandra M, Mauri F (2008) Phys Rev Lett 101:016401

    Google Scholar 

  121. Khan FS, Allen PB (1984) Phys Rev B 29:3341; Resta R (1991) Phys Rev B 44:11035

    Google Scholar 

  122. Liu AY, Mazin II (2007) Phys Rev B 75:064510; Calandra M, Kolmogorov AN, Curtarolo S (2007) Phys Rev B 75:144506

    Google Scholar 

  123. Ribeiro FJ, Cohen ML (2004) Phys Rev B 69:212507

    Google Scholar 

  124. Rosner H, Kitaigorodsky A, Pickett WE (2002) Phys Rev Lett 88:127001

    CAS  Google Scholar 

  125. Yokoya T et al (2001) Phys Rev B 64:172504

    Google Scholar 

  126. Tanigaki K, Shimizu T, Itoh KM, Teraoka J, Moritomo Y, Yamanaka S (2003) Nat Mater 2:653

    CAS  Google Scholar 

  127. Connétable D et al (2003) Phys Rev Let 91:247001

    Google Scholar 

  128. Carbotte JP (1990) Rev Mod Phys 62:10271157

    Google Scholar 

  129. Lortz R et al (2008) Phys Rev B 77:224507

    Google Scholar 

  130. Toulemonde P et al (2005) Phys Rev B 71:094504

    Google Scholar 

  131. Tse J et al (2005) Phys Rev B 72:155441

    Google Scholar 

  132. Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR (1991) Nature 350:600

    CAS  Google Scholar 

  133. Gunnarsson O (1997) Rev Mod Phys 69:575

    CAS  Google Scholar 

  134. Schlüter M, Lannoo M, Needels M, Baraff GA, Tománek D (1992) Phys Rev Lett 68:526

    Google Scholar 

  135. Coté M, Grossman JC, Cohen ML, Louie SG, Phys Rev Lett 81:697 (1998); Grossman JC, Louie SG, Cohen ML (1999) Phys Rev B 60:R6941

    Google Scholar 

  136. Devos A, Lannoo M (1998) Phys Rev B 58:8236

    CAS  Google Scholar 

  137. Adams GB, Sankey OF, Page JB, O’Keeffe M (1993) Chem Phys 176:61

    CAS  Google Scholar 

  138. Breda N, Broglia RA, Colò G, Onida G, Provasi D, Vigezzi E (2000) Phys Rev B 62:130

    CAS  Google Scholar 

  139. Spagnolatti I, Bernasconi M, Benedek G (2002) Europhys Lett 59:572

    CAS  Google Scholar 

  140. Romero NA, Kim J, Martin RM (2007) Phys Rev B 76:205405

    Google Scholar 

  141. Piskoti C, Yarger J, Zettl A (1998) Nature 393:711

    Google Scholar 

  142. Iqbal Z, Zhang Y, Grebel H, Vijayalakshmi S, Lahamer A, Benedek G, Bernasconi M, Cariboni J, Spagnolatti I, Sharma R, Owens FJ, Kozlov ME, Rao KV, Muhammed M (2003) Eur Phys JB 31:509

    CAS  Google Scholar 

  143. Wang ZX, Ke XZ, Zhu ZY, Zhu FY, Ruan ML, Chen H, Huang RB, Zheng LS (2001) Phys Lett A 280:351

    CAS  Google Scholar 

  144. Spanò E, Bernasconi M, Kopnin E (2005) Phys Rev B 72:14530

    Google Scholar 

  145. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Rev Mod Phys 73:515

    CAS  Google Scholar 

  146. Allen PB, Mitrović B (1982) Solid State Phys 37:1

    CAS  Google Scholar 

  147. Yamanaka S, Kubo A, Kini NS, Inumaru K (2006) Phys B 389:59

    Google Scholar 

  148. Guloy AM, Ramlau R, Tang Z, Schnelle W, Baitinger M, Grin Y (2006) Nature 443:320

    CAS  Google Scholar 

Download references

Acknowledgements

X.B. is indebted to D. Connétable, E. Bourgeois and V. Timoshevskii, for important contributions to part of the work presented in this chapter. G.B and M.B gratefully acknowledge the contributions to the work presented here by J. Cariboni, L. Colombo, E. Galvani, S. Gaito, A. Gambirasio, G. Onida, S. Sanguinetti, S. Serra, I. Spagnolatti and F. Zipoli. One of us (GB) acknowledges the support of the Ikerbasque Foundation (project ABSIDES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Blase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Blase, X., Benedek, G., Bernasconi, M. (2010). Structural, Mechanical, and Superconducting Properties of Clathrates. In: Colombo, L., Fasolino, A. (eds) Computer-Based Modeling of Novel Carbon Systems and Their Properties. Carbon Materials: Chemistry and Physics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9718-8_6

Download citation

Publish with us

Policies and ethics