Skip to main content

Metalloenzymes

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Metalloprotein (broader term)

Definition

Enzyme protein containing one or more metal cofactor(s).

Introduction

Metalloenzymes are enzyme proteins containing metal ions (metal cofactors), which are directly bound to the protein or to enzyme-bound nonprotein components (prosthetic groups). About one-third of all enzymes known so far are metalloenzymes (see Holm et al., 1996 for a general overview). Besides enzymes, other metalloproteins are involved in non-enzyme electron transfer reactions (cytochromes), may act as storage (e.g., ferritin for iron) or transport proteins (e.g., transferrin for iron). In the latter groups of proteins, the metal storage is reversible and the metal is a temporary component. Also ribozymes, i.e., RNA molecules with enzyme function may contain structurally and/or functionally important metal ions (mostly divalent metal ions such as Mg2+) and may be therefore termed as metalloenzymes in a broader sense (Sigel and Pyle, 2007).

Though primarily focused...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adman, E. T., 1991. Copper protein structures. Advances in Protein Chemistry, 42, 145–197.

    Article  Google Scholar 

  • Anbar, A. D., 2008. Oceans. Elements and evolution. Science, 322, 1481–1483.

    Article  Google Scholar 

  • Barton, L. L., Goulhen, F., Bruschi, M., Woodards, N. A., Plunkett, R. M., and Rietmeijer, F. J. M., 2007. The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. BioMetals, 20, 291–302.

    Article  Google Scholar 

  • Bertini, I., Ciurli, S., and Luchinat, C., 1995. The electronic structure of FeS centers in proteins and models. A contribution to the understanding of their electron transfer properties. Structure and Bonding, 83, 1–53.

    Article  Google Scholar 

  • Carrell, T. G., Tyryshkin, A. M., and Dismukes, G. C., 2002. An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction structures. Journal of Biological Inorganic Chemistry, 7, 2–22.

    Article  Google Scholar 

  • Chaudhuri, P., Wieghardt, K., Weyhermüller, T., Paine, T. K., Mukherjee, S., and Mukherjee, C., 2005. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes. Biological Chemistry, 386, 1023–1033.

    Article  Google Scholar 

  • Cowan, J. A., 2002. Structural and catalytic chemistry of magnesium-dependent enzymes. BioMetals, 15, 225–235.

    Article  Google Scholar 

  • Crans, D. C., Smee, J. J., Galdamauskas, E., and Yang, L., 2004. Chemistry and biology of vanadium and the biological activities exerted by vanadium compounds. Chemistry Reviews, 104, 849–902.

    Article  Google Scholar 

  • Degtyarenko, K., 2000. Bioorganic motifs: towards functional classification of metalloproteins. Bioinformatics Review, 16, 851–864.

    Article  Google Scholar 

  • Degtyarenko, K., and Contrino, S. 2004. COMe: the ontology of bioinorganic proteins. BMC Structural Biology, 4, 3.

    Article  Google Scholar 

  • Ermler, U., Grabarse, W., Shima, S., Goubeaud, M., and Thauer R. K., 1998. Active sites of transition-metal enzymes with a focus on nickel. Current Opinon Structural Biology, 8, 749–758.

    Article  Google Scholar 

  • Hille, R., 2002. Molybdenum and tungsten in biology. Trends in Biochemical Sciences,  27, 360–367.

    Article  Google Scholar 

  • Holm, R., Kennepohl, P., and Solomon, E. I., 1996. Structural and functional aspects of metal sites in biology. Chemistry Reviews, 96, 2239–2314.

    Article  Google Scholar 

  • Kobayashi, M., and Shimizu, S., 1999. Cobalt proteins. European Journal of Biochemistry, 261, 1–9.

    Article  Google Scholar 

  • Lipscomb, W. N., and Sträter, N., 1996. Recent advances in zinc enzymology. Chemistry Reviews, 96, 2375–2433.

    Article  Google Scholar 

  • Mauzerall, D. C., 1998. Evolution of porphyrins. Clinics Dermatology, 16, 195–201.

    Article  Google Scholar 

  • McCall, K. A., Huang, C.-C., and Fierke, C. A., 2000. Function and mechanism of zinc metalloenzymes. Journal of Nutrition, 130, 1437S–1446S.

    Google Scholar 

  • Michibata, H., Yamaguchi, N., Uyama, T., and Ueki, T., 2003. Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coordination Chemistry Reviews, 237, 41–51.

    Google Scholar 

  • Nordlund, P., and Eklund, H., 1995. Diiron-carboxylate proteins. Current Opinion in Structural Biology, 5, 758–766.

    Article  Google Scholar 

  • Ogo, S., Kabe, R., Uehara, K., Kure, B., Nishimura, T., Menon, S. C., Harada, R., Fukuzumi, S., Higuchi, Y., Ohhara, T., Tamada, T., and Kuroki, R., 2007. A dinuclear Ni(µ-H)Ru complex derived from H2. Science, 316, 585–587.

    Article  Google Scholar 

  • Page, M. J., and Di Cera, E., 2006. Role of Na+ and K+ in enzyme function. Physiological Reviews, 86, 1049–1092.

    Article  Google Scholar 

  • Que, L. Jr., and Ho, R. Y. N., 1996. Dioxygen activation by enzymes with mononuclear nonheme iron active sites. Chemistry Reviews, 96, 2607–2624.

    Article  Google Scholar 

  • Raymond, J. R., Siefert, J. L., Staples, C. R., and Blankenship, R. E., 2004. The natural history of nitrogen fixation. Molecular Biology and Evolution, 21, 541–554.

    Article  Google Scholar 

  • Russell, M. J., and Martin, W., 2004. The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29, 358–363.

    Article  Google Scholar 

  • Sigel, R. K. O., and Pyle, A. M., 2007. Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chemistry Reviews, 107, 97–113.

    Article  Google Scholar 

  • Song, L.-C., Yang, Z.-Y., Bian, H.-Z., Liu, Y., Wang, H.-T., Liu, X.-F., and Hu, Q.-M., 2005. Diiron oxadithiolate type models for the active site of iron-only hydrogenases and biomimetic hydrogen evolution catalyzed by Fe2(µ-SCH2OCH2S-µ)(CO)2. Organometallics, 24, 6126–6135.

    Article  Google Scholar 

  • Szpunar, J., 2005. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst, 130, 442–465.

    Article  Google Scholar 

  • Wächtershäuser, G., 1990. Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences of the United States of America, 87, 200–204.

    Article  Google Scholar 

  • Wieghardt, K., 1994. A structural model for the water-oxidizing manganese cluster in photosystem II. Angewandte Chemie International Edition in  English, 33, 725–728.

    Article  Google Scholar 

  • Williams, R. J. P, and Frausto da Silva, J. J. P., 2002. The involvement of molybdenum in life. Biochemical and Biophysical Research Communications, 292, 293–299.

    Article  Google Scholar 

  • Wilson, C. J., Apiyo, D., and Wittung-Stafshede, P., 2004. Role of cofactors in metalloprotein folding. Quarterly Review of Biophysics, 37, 285–314.

    Article  Google Scholar 

  • Yang, W., Hsiau-Wei, L., Hellings, H., and Yang, J. D., 2002. Structural analysis, identification, and design of calcium-bindung sites in proteins. Proteins Structure, Function, and Genetics, 47, 344–356.

    Article  Google Scholar 

  • Yocum, C. F., and Pecoraro, V. L., 1999. Recent advances in the understanding of the biological chemistry of manganese. Current Opinon Structural Biology, 3, 182–187.

    Article  Google Scholar 

  • Zbaida S., and Kariv, R., 1989. Biomimetic models for monooxygenases. Biopharmaceutics and  Drug Disposition, 10, 431–442.

    Article  Google Scholar 

  • Zerkle, A. L., House, C. H., Cox, R. P., and Canfield, D. E., 2006. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology, 4, 285–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hoppert, M. (2011). Metalloenzymes. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_134

Download citation

Publish with us

Policies and ethics