Skip to main content

The Ins and Outs of Satellite Cell Myogenesis: The Role of the Ruling Growth Factors

  • Chapter
Book cover Skeletal Muscle Repair and Regeneration

Part of the book series: Advances in Muscle Research ((ADMR,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa J, Esko JD (1999) Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/ N-sulfotransferase family. J Biol Chem 274(5):2690–2695

    Article  PubMed  CAS  Google Scholar 

  • Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138(2):311–315

    Article  PubMed  CAS  Google Scholar 

  • Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312

    Article  PubMed  CAS  Google Scholar 

  • Anastasi S, Giordano S, Sthandier O, Gambarotta G, Maione R, Comoglio PM et al (1997) A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive met kinase activation on myogenic differentiation. J Cell Biol 137(5):1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Cell Biol 11(5):1859–1874

    CAS  Google Scholar 

  • Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132(4):657–666

    Article  PubMed  CAS  Google Scholar 

  • Armand AS, Launay T, Pariset C, Della Gaspera B, Charbonnier F, Chanoine C (2003) Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice. Biochim Biophys Acta 1642(1–2):97–105

    PubMed  CAS  Google Scholar 

  • Armand AS, Laziz I, Chanoine C (2006) FGF6 in myogenesis. Biochim Biophys Acta 1763(8):773–778

    Article  PubMed  CAS  Google Scholar 

  • Armand AS, Pariset C, Laziz I, Launay T, Fiore F, Della Gaspera B et al (2005) FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. J Cell Physiol 204(1):297–308

    Article  PubMed  CAS  Google Scholar 

  • Armelin HA (1973) Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci USA 70(9):2702–2706

    Article  PubMed  CAS  Google Scholar 

  • Artaza JN, Bhasin S, Magee TR, Reisz-Porszasz S, Shen R, Groome NP et al (2005) Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology 146(8):3547–3557

    Article  PubMed  CAS  Google Scholar 

  • Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647

    Google Scholar 

  • Beauchamp JR, Heslop L, Yu DSW, Tajbakhsh S, Kelly RG, Wernig A et al (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151(6):1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, MacNicol M, Peterson CA (2004) Alterations in the TGFbeta signaling pathway in myogenic progenitors with age. Aging Cell 3(6):353–361

    Article  PubMed  CAS  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J et al., (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8(10):404–410

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R (1986) A satellite cell mitogen from crushed adult muscle. Dev Biol 115(1):140–147

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R (1989) Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc 21(5 Suppl):S164–S172

    PubMed  CAS  Google Scholar 

  • Bischoff R (1990) Control of satellite cell proliferation. Adv Exp Med Biol 280:147–157

    PubMed  CAS  Google Scholar 

  • Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208(4):505–515

    Article  PubMed  CAS  Google Scholar 

  • Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14(1):167–196

    Article  PubMed  CAS  Google Scholar 

  • Bogdanovich S, Krag TOB, Barton ER, Morris LD, Whittemore LA, Ahima RS et al (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420(6914):418–421

    Article  PubMed  CAS  Google Scholar 

  • Bogdanovich S, Perkins KJ, Krag TOB, Whittemore LA, Khurana TS (2005) Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. FASEB J 19(6):543–549

    Article  PubMed  CAS  Google Scholar 

  • Booth FW (2006) The many flavors of IGF-I. J Appl Physiol 100(6):1755–1756

    Article  PubMed  CAS  Google Scholar 

  • Botta M, Manetti F, Corelli F (2000) Fibroblast growth factors and their inhibitors. Curr Pharm Des 6:1897–1924

    Article  PubMed  CAS  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF et al (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251(4995):802–804

    Article  PubMed  CAS  Google Scholar 

  • Brandan E, Carey DJ, Larrain J, Melo F, Campos A (1996) Synthesis and processing of glypican during differentiation of skeletal muscle cells. Eur J Cell Biol 71(2):170–176

    PubMed  CAS  Google Scholar 

  • Brandan E, Fuentes ME, Andrade W (1991) The proteoglycan decorin is synthesized and secreted by differentiated myotubes. Eur J Cell Biol 55(2):209–216

    PubMed  CAS  Google Scholar 

  • Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16(5):525–532

    Article  PubMed  CAS  Google Scholar 

  • Burgess WH, Maciag T (1989) The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58(1):575–602

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM, Dedkov EI, Borisov AB, Faulkner JA (2001) Skeletal muscle regeneration in very old rats. Journal of Gerontology. Series A, J Gerontol A Biol Sci Med Sci 56(5):B224–B233

    CAS  Google Scholar 

  • Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 277(2, Pt 2):R601-R606

    PubMed  CAS  Google Scholar 

  • Carnac G, Ricaud S, Vernus B, Bonnieu A (2006) Myostatin: Biology and clinical relevance. Mini Rev Med Chem 6:765–770

    Article  PubMed  CAS  Google Scholar 

  • Carrino DA (1998) Dynamic expression of proteoglycans during skeletal muscle development. Basic Appl Myology 8(2):95–106

    Google Scholar 

  • Casar JC, Cabello-Verrugio C, Olguin H, Aldunate R, Inestrosa NC, Brandan E (2004) Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J Cell Sci 117(1):73–84

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro U, Niedermeyer J, Fuxa M, Christofori G (2001) N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 3(7):650–657

    Article  PubMed  CAS  Google Scholar 

  • Cenciarelli C, De Santa F, Puri PL, Mattei E, Ricci L, Bucci F et al (1999) Critical role played by Cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol Cell Biol 19(7):5203–5217

    PubMed  CAS  Google Scholar 

  • Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23(6):787–823

    Article  PubMed  CAS  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238

    Article  PubMed  CAS  Google Scholar 

  • Cheifetz S, Andres JL, Massague J (1988) The transforming growth factor-beta receptor type III is a membrane proteoglycan. Domain structure of the receptor. J Biol Chem 263(32):16984–16991

    PubMed  CAS  Google Scholar 

  • Citores L, Khnykin D, Sorensen V, Wesche J, Klingenberg O, Wiedlocha A et al (2001) Modulation of intracellular transport of acidic fibroblast growth factor by mutations in the cytoplasmic receptor domain. J Cell Sci 114(9):1677–1689

    PubMed  CAS  Google Scholar 

  • Citores L, Wesche J, Kolpakova E, Olsnes S (1999) Uptake and Intracellular transport of acidic fibroblast growth factor: evidence for free and cytoskeleton-anchored fibroblast growth factor Receptors. Mol Biol Cell 10(11):3835–3848

    PubMed  CAS  Google Scholar 

  • Clegg CH, Linkhart TA, Olwin BB, Hauschka SD (1987) Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol 105(2):949–956

    Article  PubMed  CAS  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301

    Article  PubMed  CAS  Google Scholar 

  • Comoglio PM (1993) Structure, biosynthesis and biochemical properties of the HGF receptor in normal and malignant cells. EXS 65:131–165

    PubMed  CAS  Google Scholar 

  • Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4(3):407–410

    PubMed  CAS  Google Scholar 

  • Cook DR, Doumit ME, Merkel RA (1993) Transforming growth factor-beta, basic fibroblast growth factor, and platelet-derived growth factor-BB interact to affect proliferation of clonally derived porcine satellite cells. J Cell Physiol 157(2):307–312

    Article  PubMed  CAS  Google Scholar 

  • Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM et al (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311(5981):29–33

    Article  PubMed  CAS  Google Scholar 

  • Cornelison DDW, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239(1):79–94

    Article  PubMed  CAS  Google Scholar 

  • Cornelison DDW, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18(18):2231–2236

    Article  PubMed  CAS  Google Scholar 

  • Cornelison DDW, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283

    Article  PubMed  CAS  Google Scholar 

  • Coulier F, Pizette S, Ollendorff V, deLapeyriere O, Birnbaum D (1994) The human and mouse fibroblast growth factor 6 (FGF6) genes and their products: possible implication in muscle development. Prog Growth Factor Res 5(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Coulier F, Pontarotti P, Roubin R, Hartung H, Goldfarb M, Birnbaum D (1997) Of worms and men: an evolutionary perspective on the fibroblast growth factor (FGF) and FGF receptor families. J Mol Evol 44(1):43–56

    Article  PubMed  CAS  Google Scholar 

  • Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304(1):246–259

    Article  PubMed  CAS  Google Scholar 

  • de Alvaro C, Martinez N, Rojas JM, Lorenzo M (2005) Sprouty-2 overexpression in C2C12 Cells confers myogenic differentiation properties in the presence of FGF2. Mol Biol Cell 16(9):4454–4461

    Article  PubMed  CAS  Google Scholar 

  • deLapeyriere O, Ollendorff V, Planche J, Ott MO, Pizette S, Coulier F et al (1993) Expression of the Fgf6 gene is restricted to developing skeletal muscle in the mouse embryo. Development 118(2):601–611

    PubMed  CAS  Google Scholar 

  • De Falco G, Comes F, Simone C (2006) pRb: master of differentiation. Coupling irreversible cell cycle withdrawal with induction of muscle-specific transcription. Oncogene 25(38):5244–5249

    Article  PubMed  CAS  Google Scholar 

  • Desgranges P, Barbaud C, Caruelle JP, Barritault D, Gautron J (1999) A substituted dextran enhances muscle fiber survival and regeneration in ischemic and denervated rat EDL muscle. FASEB J 13(6):761–766

    PubMed  CAS  Google Scholar 

  • DiMario JX (2002) Activation and repression of growth factor receptor gene transcription (Review). Int J Mol Med 10(1):65–71

    PubMed  CAS  Google Scholar 

  • Dominique JE, Gerard C (2006) Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects. Exp Cell Res 312(13):2401–2414

    PubMed  CAS  Google Scholar 

  • Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R (1995) Processing of transforming growth factor 1 precursor by human furin convertase. J Biol Chem 270(18):10618–10624

    Article  PubMed  CAS  Google Scholar 

  • Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149

    Article  PubMed  CAS  Google Scholar 

  • Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, Brandan E (2006) Increase in decorin and biglycan in Duchenne Muscular Dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease J Cell Mol Med 3:758–769

    Article  Google Scholar 

  • Feldman BJ, Streeper RS, Farese RVJ, Yamamoto KR (2006) Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proceedings of the National Academy of Sciences of the United States of America 103(42):15675–15680

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Xu J, Wang F, Kan M, McKeehan WL (1996) Nuclear localization of a complex of fibroblast growth factor(FGF)-1 and an NH2-terminal fragment of FGF receptor isoforms R4 and R1alpha in human liver cells. Biochimica et Biophysica Acta 1310(1):67–73

    PubMed  Google Scholar 

  • Fiore F, Sebille A, Birnbaum D (2000) Skeletal muscle regeneration is not impaired in Fgf6 -/- mutant mice. Biochem Biophys Res Commun 272(1):138–143

    Article  PubMed  CAS  Google Scholar 

  • Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17(5):481–517

    Article  PubMed  CAS  Google Scholar 

  • Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11(16):2040–2051

    PubMed  CAS  Google Scholar 

  • Funakoshi H, Nakamura T (2003) Hepatocyte growth factor: from diagnosis to clinical applications. Clin Chim Acta 327(1–2):1–23

    Article  PubMed  CAS  Google Scholar 

  • Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O (1998) Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta 1402(1):39–51

    Article  PubMed  CAS  Google Scholar 

  • Gao G, Goldfarb M (1995) Heparin can activate a receptor tyrosine kinase. EMBO J 14(10):2183–2190

    PubMed  CAS  Google Scholar 

  • Garrett KL, Anderson JE (1995) Colocalization of bFGF and the myogenic regulatory gene myogenin in dystrophic mdx muscle precursors and young myotubes in vivo. Dev Biol 169(2):596–608

    Article  PubMed  CAS  Google Scholar 

  • Gohda E, Tsubouchi H, Nakayama H, Hirono S, Sakiyama O, Takahashi K et al (1998) Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest 81(2):414–419

    Google Scholar 

  • Goldfarb M (1996) Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev 7(4):311–325

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AM, Buscaglia M, Ong M, Baird A (1990) Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol 110(3):753–765

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AM, Hill DJ, Logan A, Maher PA, Baird A (1996) Distribution of fibroblast growth factor (FGF)-2 and FGF receptor-1 messenger RNA expression and protein presence in the mid-trimester human fetus. Pediatr Res 39(3):375–385

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S et al (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95(25):14938–14943

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz D (1974) Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249(453):123–127

    Article  PubMed  CAS  Google Scholar 

  • Graves DC, Yablonka-Reuveni Z (2000) Vascular smooth muscle cells spontaneously adopt a skeletal muscle phenotype: a unique Myf5-/MyoD+ myogenic program. J Histochem Cytochem 48(9):1173–1194

    PubMed  CAS  Google Scholar 

  • Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B et al (2003) Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35(4):227–238

    Article  PubMed  CAS  Google Scholar 

  • Grobet L, Royo Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J et al (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics 17(1):71–74

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD (2002) Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling. Biogerontology 3(1–2):19–24

    Article  PubMed  CAS  Google Scholar 

  • Grounds MD, Yablonka-Reuveni Z (1993) Molecular and cell biology of skeletal muscle regeneration. Mol Cell Biol Hum Dis Ser 3:210–256

    PubMed  CAS  Google Scholar 

  • Groux-Muscatelli B, Bassaglia Y, Barritault D, Caruelle JP, Gautron J (1990) Proliferating satellite cells express acidic fibroblast growth factor during in vitro myogenesis. Dev Biol 142(2):380–385

    Article  PubMed  CAS  Google Scholar 

  • Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J (2001) Critical role for the docking-protein FRS2alpha in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci USA 98(15):8578–8583

    Article  PubMed  CAS  Google Scholar 

  • Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ et al (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267(5200):1018–1021

    Article  PubMed  CAS  Google Scholar 

  • Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R et al (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231(3):489–502

    Article  PubMed  CAS  Google Scholar 

  • Han JK, Martin GR (1993) Embryonic expression of Fgf-6 is restricted to the skeletal muscle lineage. Dev Biol 158(2):549–554

    Article  PubMed  CAS  Google Scholar 

  • Hannon K, Kudla A, J., McAvoy MJ, Clase KL, Olwin BB (1996) Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms. J Cell Biol 132(6):1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Harmer NJ, Pellegrini L, Chirgadze D, Fernandez-Recio J, Blundell TL (2004) The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF Family and offers a structural basis for its unusual receptor affinity. Biochemistry 43(3):629–640

    Article  PubMed  CAS  Google Scholar 

  • Hartley RS, Yablonka-Reuveni Z (1990) Long-term maintenance of primary myogenic cultures on a reconstituted basement membrane. In Vitro Cell Dev Biol 26(10):955–961

    Article  PubMed  CAS  Google Scholar 

  • Hathaway MR, Hembree JR, Pampusch MS, Dayton WR (1991) Effect of transforming growth factor beta-1 on ovine satellite cell proliferation and fusion. J Cell Physiol 146(3):435–441

    Article  PubMed  CAS  Google Scholar 

  • Hathaway MR, Pampusch MS, Hembree JR, Dayton WR (1994) Transforming growth factor beta-1 facilitates establishing clonal populations of ovine muscle satellite cells. J Anim Sci 72(8):2001–2007

    PubMed  CAS  Google Scholar 

  • Haugsten EM, Sorensen V, Brech A, Olsnes S, Wesche J (2005) Different intracellular trafficking of FGF1 endocytosed by the four homologous FGF receptors. J Cell Sci 118(17):3869–3881

    Article  PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Hayashi S, Aso H, Watanabe K, Nara H, Rose MT, Ohwada S et al (2000) Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochem Cell Biol 122(5):427–434

    Article  CAS  Google Scholar 

  • Higashio K, Shima N, Goto M, Itagaki Y, Nagao M, Yasuda H et al (1990) Identity of a tumor cytotoxic factor from human fibroblasts and hepatocyte growth factor. Biochem Biophys Res Commun 170(1):397–404

    Article  PubMed  CAS  Google Scholar 

  • Hirai S, Matsumoto H, Hino N, Kawachi H, Matsui T, Yano H (2007) Myostatin inhibits differentiation of bovine preadipocyte. Domest Anim Endocrinol 32(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113(4):483–494

    Article  PubMed  CAS  Google Scholar 

  • Israeli D, Benchaouir R, Ziaei S, Rameau P, Gruszczynski C, Peltekian E et al (2004) FGF6 mediated expansion of a resident subset of cells with SP phenotype in the C2C12 myogenic line. J Cell Physiol 201(3):409–419

    Article  PubMed  CAS  Google Scholar 

  • Jennische E, Ekberg S, Matejka GL (1993) Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. Am J Physiol Cell Physiol 265(1):C122–C128

    CAS  Google Scholar 

  • Jenniskens GJ, Veerkamp JH, van Kuppevelt TH (2006) Heparan sulfates in skeletal muscle development and physiology. J Cell Physiol 206(2):283–294

    Article  PubMed  CAS  Google Scholar 

  • Jespersen J, Kjaer M, Schjerling P (2006) The possible role of myostatin in skeletal muscle atrophy and cachexia. Scand J Med Sci Sports 16(2):74–82

    Article  PubMed  CAS  Google Scholar 

  • Ji S, Losinski RL, Cornelius SG, Frank GR, Willis GM, Gerrard DE et al (1998) Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am J Physiol 275(4, Pt 2):R1265–R1273

    PubMed  CAS  Google Scholar 

  • Jin P, Farmer K, Ringertz NR, Sejersen T (1993) Proliferation and differentiation of human fetal myoblasts is regulated by PDGF-BB. Differentiation 54(1):47–54

    Article  PubMed  CAS  Google Scholar 

  • Jin P, Sejersen T, Ringertz NR (1991) Recombinant platelet-derived growth factor-BB stimulates growth and inhibits differentiation of rat L6 myoblasts. J Biol Chem 266(2):1245–1249

    PubMed  CAS  Google Scholar 

  • Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60:1–41

    PubMed  CAS  Google Scholar 

  • Johnson SE, Allen RE (1995) Activation of skeletal muscle satellite cells and the role of fibroblast growth factor receptors. Exp Cell Res 219(2):449–453

    Article  PubMed  CAS  Google Scholar 

  • Johnston CL, Cox HC, Gomm JJ, Coombes RC (1995) bFGF and aFGF induce membrane ruffling in breast cancer cells but not in normal breast epithelial cells: FGFR-4 involvement. Biochem J 306(Pt 2):609–616

    PubMed  CAS  Google Scholar 

  • Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DDW, Fedorov YV et al (2005) The p38 alpha beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169(1):105–116

    Article  PubMed  CAS  Google Scholar 

  • Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286(2):263–275

    Article  PubMed  CAS  Google Scholar 

  • Kambadur R, Sharma M, Smith TPL, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled belgian blue and piedmontese cattle. Genome Res 7(9):910–915

    PubMed  CAS  Google Scholar 

  • Kan M, Wu X, Wang F, McKeehan WL (1999) Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 1999;274(22):15947–15952

    Article  CAS  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V et al (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431(7007):466–471

    Article  PubMed  CAS  Google Scholar 

  • Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48(8):1079–1096

    PubMed  CAS  Google Scholar 

  • Kiess M, Gill RM, Hamel PA (1995) Expression of the positive regulator of cell cycle progression, cyclin D3, is induced during differentiation of myoblasts into quiescent myotubes. Oncogene 10(1):159–166

    PubMed  CAS  Google Scholar 

  • Kim HS, Liang L, Dean RG, Hausman DB, Hartzell DL, Baile CA (2001a) Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures. Biochem Biophys Res Commun 281(4):902–906

    Article  CAS  Google Scholar 

  • Kim I, Moon S, Yu K, Kim U, Koh GY (2001b) A novel fibroblast growth factor receptor-5 preferentially expressed in the pancreas. Biochim Biophys Acta 1518(1–2):152–156

    CAS  Google Scholar 

  • Kitzmann M, Vandromme M, Schaeffer V, Carnac G, Labbe JC, Lamb N et al (1999) cdk1- and cdk2-mediated phosphorylation of MyoD Ser200 in growing C2 myoblasts: Role in modulating MyoD half-life and myogenic activity. Mol Cell Biol 19(4):3167–3176

    PubMed  CAS  Google Scholar 

  • Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H et al (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11(2):181–190

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg O, Wiedlocha A, Rapak A, Khnykin D, Citores L, Olsnes S (2000) Requirement for C-terminal end of fibroblast growth factor receptor 4 in translocation of acidic fibroblast growth factor to cytosol and nucleus. J Cell Sci 113(10):1827–1838

    PubMed  CAS  Google Scholar 

  • Knapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH (2006) Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133(4):601–610

    Article  PubMed  CAS  Google Scholar 

  • Kollias HD, Perry RLS, Miyake T, Aziz A, McDermott JC (2006) Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol 26(16):6248–6260

    Article  PubMed  CAS  Google Scholar 

  • Kontaridis MI, Liu X, Zhang L, Bennett AM (2002) Role of SHP-2 infibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts. Mol Cell Biol (11):3875–3891

    Google Scholar 

  • Korhonen J, Partanen J, Eerola E, Vainikka S, Alitalo R, Makela TP et al (1992) Five FGF receptors with distinct expression patterns. EXS 61:91–100

    PubMed  CAS  Google Scholar 

  • Kovalenko D, Yang X, Chen PY, Nadeau RJ, Zubanova O, Pigeon K et al (2006) A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Cell Signal 18(11):1958–1966

    Article  PubMed  CAS  Google Scholar 

  • Kudla AJ, Jones NC, Rosenthal RS, Arthur K, Clase KL, Olwin BB (1998) The FGF Receptor-1 tyrosine kinase domain regulates myogenesis but is not sufficient to stimulate proliferation. J Cell Biol 142(1):241–250

    Article  PubMed  CAS  Google Scholar 

  • Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840

    Article  PubMed  CAS  Google Scholar 

  • Langsdorf A, Do AT, Kusche-Gullberg M, Emerson CP Jr, Ai X (2007) Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev Biol in press

    Google Scholar 

  • Larrain J, Alvarez J, Hassell JR, Brandan E (1997a) Expression of perlecan, a proteoglycan that binds myogenic inhibitory basic fibroblast growth factor, is down regulated during skeletal muscle differentiation. Exp Cell Res 234(2):405–412

    Article  CAS  Google Scholar 

  • Larrain J, Cizmeci-Smith G, Troncoso V, Stahl RC, Carey DJ, Brandan E (1997b) Syndecan-1 expression is down-regulated during myoblast terminal differentiation. Modulation by growth factors and retinoic acid. J Biol Chem 272(29):18418–18424

    Article  CAS  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98(16):9306–9311

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Putnam AJ, Miranti CK, Gustafson M, Wang LM, Vande Woude GF et al (2004) Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene 23(30):5193–5202

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur JP, Sebille A (1995) Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor beta 1 or insulin-like growth factor I. J Neuroimmunol 57(1–2):85–91

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Gitelman I, Ponzetto C, Halevy O (2002) Preferential binding of grb2 or phosphatidylinositol 3-kinase to the met receptor has opposite effects on hgf-induced myoblast proliferation. Exp Cell Res 274(2):288–298

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y et al (2004) Transforming growth factor-beta 1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: A key event in muscle fibrogenesis. Am J Pathol 164(3):1007–1019

    PubMed  CAS  Google Scholar 

  • Li ZF, Shelton GD, Engvall E (2005) Elimination of myostatin does not combat muscular dystrophy in dy mice but increases postnatal lethality. Am J Pathol 166(2):491–497

    PubMed  CAS  Google Scholar 

  • Lietha D, Chirgadze DY, Mulloy B, Blundell TL, Gherardi E (2001) Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO J 20(20):5543–5555

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA (2002) Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun 291(3):701–706

    Article  PubMed  CAS  Google Scholar 

  • Ludolph DC, Konieczny SF (1995) Transcription factor families: muscling in on the myogenic program. FASEB J 9(15):1595–1604

    PubMed  CAS  Google Scholar 

  • Lyon M, Deakin JA, Gallagher JT (2002) The mode of action of heparan and dermatan sulfates in the regulation of hepatocyte growth factor/scatter factor. J Biol Chem 277(2):1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT (1994) Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem 269(15):11216–11223

    PubMed  CAS  Google Scholar 

  • Lyon M, Deakin JA, Rahmoune H, Fernig DG, Nakamura T, Gallagher JT (1998) Hepatocyte growth factor/scatter factor binds with high affinity to dermatan sulfate. J Biol Chem 273(1):271–278

    Article  PubMed  CAS  Google Scholar 

  • Maher PA (1996) Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 134(2):529–536

    Article  PubMed  CAS  Google Scholar 

  • Marics I, Padilla F, Guillemot JF, Scaal M, Marcelle C (2002) FGFR4 signaling is a necessary step in limb muscle differentiation. Development 129(19):4559–4569

    PubMed  CAS  Google Scholar 

  • Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1(3):169–178

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGF beta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Nakamura T (1997) Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun 239(3):639–644

    Article  PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cells of skeletal muscle fibres. J Biophys Biochem 9:493–495

    Article  CAS  Google Scholar 

  • McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147

    Article  PubMed  CAS  Google Scholar 

  • McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L et al (2005) Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci 118(15):3531–3541

    Article  PubMed  CAS  Google Scholar 

  • McFarland DC, Gilkerson KK, Pesall JE, Wellenreiter RH, Ferrin NH, Ye WV et al (1997) Comparison of growth factor receptors and metabolic characteristics of satellite cells derived from the biceps femoris and pectoralis major muscles of the turkey. Gen Comp Endocrinol 105(1):114–120

    Article  PubMed  CAS  Google Scholar 

  • McFarland DC, Liu X, Velleman SG, Zeng C, Coy CS, Pesall JE (2003) Variation in fibroblast growth factor response and heparan sulfate proteoglycan production in satellite cell populations. Comparative Biochemistry and Physiology Part C: Toxicol Pharmacol 134(3):341–351

    Article  CAS  Google Scholar 

  • McFarland DC, Velleman SG, Pesall JE, Liu C (2006) Effect of myostatin on turkey myogenic satellite cells and embryonic myoblasts. Comp Biochem Physiol A Mol Integr Physiol 144(4):501–508

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94(23):12457–12461

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lee SJ (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest;109(5):595–601

    Article  PubMed  CAS  Google Scholar 

  • Meddahi A, Bree F, Papy-Garcia D, Gautron J, Barritault D, Caruelle JP (2002) Pharmacological studies of RGTA(11), a heparan sulfate mimetic polymer, efficient on muscle regeneration. J Biomed Mater Res 62(4):525–531

    Article  PubMed  CAS  Google Scholar 

  • Melo F, Carey DJ, Brandan E (1996) Extracellular matrix is required for skeletal muscle differentiation but not myogenin expression. J Cell Biochem 1996;62(2):227–239

    Article  CAS  Google Scholar 

  • Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278(1):C174–C181

    PubMed  CAS  Google Scholar 

  • Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N et al (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126(20):4465–4475

    PubMed  CAS  Google Scholar 

  • Miura T, Kishioka Y, Wakamatsu J, Hattori A, Hennebry A, Berry CJ et al (2006) Decorin binds myostatin and modulates its activity to muscle cells. Biochem Biophys Res Commun 340(2):675–680

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83(7):1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Thomas DR, Wilson MMG (2006) Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 83(4):735–743

    PubMed  CAS  Google Scholar 

  • Mourkioti F, Rosenthal N (2005) IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 26(10):535–542

    Article  PubMed  CAS  Google Scholar 

  • Naar AM, Lemon BD, Tjian R (2001) Transcriptional coactivator complexes. Annu Rev Biochem 70:475–501

    Article  PubMed  CAS  Google Scholar 

  • Nagata Y, Partridge TA, Matsuda R, Zammit PS (2006) Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J Cell Biol 174(2):245–253

    Article  PubMed  CAS  Google Scholar 

  • Naka D, Ishii T, Yoshiyama Y, Miyazawa K, Hara H, Hishida T et al (1992) Activation of hepatocyte growth factor by proteolytic conversion of a single chain form to a heterodimer. J Biol Chem 267(28):20114–20119

    PubMed  CAS  Google Scholar 

  • Nakamura T, Nawa K, Ichihara A (1984) Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 122(3):1450–1459

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A et al (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342(6248):440–443

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Teramoto H, Ichihara A (1986) Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci USA 83(17):6489–6493

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK et al (1991) Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 6(4):501–504

    PubMed  CAS  Google Scholar 

  • Neuhaus P, Oustanina S, Loch T, Kruger M, Bober E, Dono R et al (2003) Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol Cell Biochem 23(17):6037–6048

    Article  CAS  Google Scholar 

  • Nishi M, Yasue A, Nishimatu S, Nohno T, Yamaoka T, Itakura M et al (2002) A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem Biophys Res Commun 293(1):247–251

    Article  PubMed  CAS  Google Scholar 

  • Novitch BG, Spicer DB, Kim PS, Cheung WL, Lassar AB (1999) pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol 9(9):449–459

    Article  PubMed  CAS  Google Scholar 

  • Olwin BB, Arthur K, Hannon K, Hein P, McFall A, Riley B et al (1994) Role of FGFs in skeletal muscle and limb development. Mol Reprod Dev 39(1):90–100

    Article  PubMed  CAS  Google Scholar 

  • Olwin BB, Hall ZW (1985) Developmental regulation of laminin accumulation in the extracellular matrix of a mouse muscle cell line. Dev Biol 112(2):359–367

    Article  PubMed  CAS  Google Scholar 

  • Olwin BB, Rapraeger A (1992) Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J Cell Biol 118(3):631–639

    Article  PubMed  CAS  Google Scholar 

  • Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I (2001) Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proceedings of the National Academy of Sciences of the United States of America 98(11):6074–6079

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays 22(2):108–112

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM (2005) FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16(2):205–213

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biology 2(3):reviews3005.1–3005.12

    Google Scholar 

  • Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F et al (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271(25):15292–15297

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P (1992) Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 12(1):240–247

    PubMed  CAS  Google Scholar 

  • Osses N, Brandan E (2002) ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression. Am J Physiol Cell Physiol 282(2):C383–394

    PubMed  CAS  Google Scholar 

  • Ostbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen O (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268(20):5249–5257

    Article  PubMed  CAS  Google Scholar 

  • Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 2004;23(16):3430–3439

    Article  CAS  Google Scholar 

  • Parsons SA, Millay DP, Sargent MA, McNally EM, Molkentin JD (2006) Age-dependent effect of myostatin blockade on disease severity in a murine model of limb-girdle muscular dystrophy. Am J Pathol 168(6):1975–1985

    Article  PubMed  CAS  Google Scholar 

  • Patel K, Amthor H (2005) The function of Myostatin and strategies of Myostatin blockade–new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord 15(2):117–126

    Article  PubMed  CAS  Google Scholar 

  • Pavlath GK, Thaloor D, Rando TA, Cheong M, English AW, Zheng B (1998) Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities. Dev Dyn 212(4):495–508

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407(6807):1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Perona R (2006) Cell signalling: growth factors and tyrosine kinase receptors. Clin Translational Oncol 8(2):77–82

    Article  CAS  Google Scholar 

  • Perry RLS, Parker MH, Rudnicki MA (2001) Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol Cell 8(2):291–301

    Article  PubMed  CAS  Google Scholar 

  • Pizette S, Coulier F, Birnbaum D, deLapeyriere O (1996) FGF6 modulates the expression of fibroblast growth factor receptors and myogenic genes in muscle cells. Exp Cell Res 224(1):143–151

    Article  PubMed  CAS  Google Scholar 

  • Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M (2000) Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101(4):413–424

    Article  PubMed  CAS  Google Scholar 

  • Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S et al (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77(2):261–271

    Article  PubMed  CAS  Google Scholar 

  • Popovici C, Roubin R, Coulier F, Birnbaum D (2005) An evolutionary history of the FGF superfamily. BioEssays 27(8):849–857

    Article  PubMed  CAS  Google Scholar 

  • Puri PL, Iezzi S, Stiegler P, Chen TT, Schiltz RL, Muscat GEO et al (2001) Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 8(4):885–897

    Article  PubMed  CAS  Google Scholar 

  • Quinn LS, Steinmetz B, Maas A, Ong L, Kaleko M (1994) Type-1 insulin-like growth factor receptor overexpression produces dual effects on myoblast proliferation and differentiation. J Cell Physiol 159(3):387–398

    Article  PubMed  CAS  Google Scholar 

  • Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125(6):1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252(5013):1705–1708

    Article  PubMed  CAS  Google Scholar 

  • Reich A, Sapir A, Shilo B (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126(18):4139–4147

    PubMed  CAS  Google Scholar 

  • Reilly JF, Maher PA (2001) Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152(6):1307–1312

    Article  PubMed  CAS  Google Scholar 

  • Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A et al (2003) Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 285(4):E876–E888

    PubMed  CAS  Google Scholar 

  • Rescan PY (1998) Identification of a fibroblast growth factor 6 (FGF6) gene in a non-mammalian vertebrate: continuous expression of FGF6 accompanies muscle fiber hyperplasia. Biochim Biophys Acta 1443(3):305–314

    PubMed  CAS  Google Scholar 

  • Rios R, Carneiro I, Arce VM, Devesa J (2001) Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun 280(2):561–566

    Article  PubMed  CAS  Google Scholar 

  • Riquelme C, Larrain J, Schonherr E, Henriquez JP, Kresse H, Brandan E (2001) Antisense inhibition of decorin expression in myoblasts decreases cell responsiveness to transforming growth factor beta and accelerates skeletal muscle differentiation. J Biol Chem 276(5):3589–3596

    Article  PubMed  CAS  Google Scholar 

  • Roghani M, Mansukhani A, Dell’Era P, Bellosta P, Basilico C, Rifkin DB et al (1994) Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J BiolChem 269(6):3976–3984

    CAS  Google Scholar 

  • Rosenthal SM, Cheng Z (1995) Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc Natl Acad Sci USA 92(22):10307–10311

    Article  PubMed  CAS  Google Scholar 

  • Sachs M, Brohmann H, Zechner D, Muller TS, Hulsken J, Walther I et al (2000) Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 150(6):1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T (2000) Postnatal profiles of myogenic regulatory factors and the receptors of TGF-beta 2, LIF and IGF-I in the gastrocnemius and rectus femoris muscles of dy mouse. Acta Neuropathol 99(2):169–176

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Li Y, Foster W, Fukushima K, Badlani N, Adachi N et al (2003) Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 28(3):365–372

    Article  PubMed  CAS  Google Scholar 

  • Scata KA, Bernard DW, Fox J, Swain JL (1999) FGF receptor availability regulates skeletal myogenesis. Exp Cell Res 250(1):10–21

    Article  PubMed  CAS  Google Scholar 

  • Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W (2000) Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 149(7):1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W et al (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. New Engl J Med 350(26):2682–2688

    Article  PubMed  CAS  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786

    Article  PubMed  CAS  Google Scholar 

  • Shaoul E, Reich-Slotky R, Berman B, Ron D (1995) Fibroblast growth factor receptors display both common and distinct signaling pathways. Oncogene 10(8):1553–1561

    PubMed  CAS  Google Scholar 

  • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: Defining the myogenic potency of aging skeletal muscle. Dev Biol 294(1):50–66

    Article  PubMed  CAS  Google Scholar 

  • Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404

    Article  PubMed  CAS  Google Scholar 

  • Shefer G, Yablonka-Reuveni Z (2007) Reflections on lineage potential of skeletal muscle satellite cells: Do they sometimes go MAD? Crit Rev Eukaryot Gene Expr. 17(1):13–29

    PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  PubMed  CAS  Google Scholar 

  • Shim K, Minowada G, Coling DE, Martin GR (2005) Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell 8(4):553–564

    Article  PubMed  CAS  Google Scholar 

  • Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209(3):866–873

    Article  PubMed  CAS  Google Scholar 

  • Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P et al (2001) Identification of a new fibroblast growth factor receptor, FGFR5. Gene 2001;271(2):171–182

    CAS  Google Scholar 

  • Smith TH, Block NE, Rhodes SJ, Konieczny SF, Miller JB (1993) A unique pattern of expression of the four muscle regulatory factor proteins distinguishes somitic from embryonic, fetal and newborn mouse myogenic cells. Development 117(3):1125–1133

    PubMed  CAS  Google Scholar 

  • Smith TH, Kachinsky AM, Miller JB (1994) Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins. J Cell Biol 127(1):95–105

    Article  PubMed  CAS  Google Scholar 

  • Song A, Wang Q, Goebl MG, Harrington MA (1998) Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol 18(9):4994–4999

    PubMed  CAS  Google Scholar 

  • Sorokin A, Mohammadi M, Huang J, Schlessinger J (1994) Internalization of fibroblast growth factor receptor is inhibited by a point mutation at tyrosine 766. J Biol Chem 269(25):17056–17061

    PubMed  CAS  Google Scholar 

  • Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin CH (1996) Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta1-induced cellular responses. EMBO J 15(22):6231–6240

    PubMed  CAS  Google Scholar 

  • Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ et al (2002) The myostatin gene is a downstream target gene of basic Helix-Loop-Helix transcription factor MyoD. Mol Cell Biochem 22(20):7066–7082

    Article  CAS  Google Scholar 

  • Stark KL, McMahon JA, McMahon AP (1991) FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development 113(2):641–651

    PubMed  CAS  Google Scholar 

  • Stauber DJ, DiGabriele AD, Hendrickson WA (2000) Structural interactions of fibroblast growth factor receptor with its ligands. Proc Natl Acad Sci USA 97(1):49–54

    Article  PubMed  CAS  Google Scholar 

  • Steinfeld R, Van Den Berghe H, David G (1996) Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol 133(2):405–416

    Article  PubMed  CAS  Google Scholar 

  • Stoker M, Gherardi E, Perryman M, Gray J (1987) Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327(6119):239–242

    Article  PubMed  CAS  Google Scholar 

  • Strack AM, Myers RW (2004) Modulation of metabolic syndrome by fibroblast growth factor 19 (FGF19)? Endocrinology 145(6):2591–2593

    Article  PubMed  CAS  Google Scholar 

  • Suzuki J, Yamazaki Y, Li G, Kaziro Y, Koide H (2000) Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol Cell Biol 20(13):4658–4665

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Yamanouchi K, Soeta C, Katakai Y, Harada R, Naito K et al (2002) Skeletal muscle injury induces hepatocyte growth factor expression in spleen. Biochem Biophys Res Commun 292(3):709–714

    Article  PubMed  CAS  Google Scholar 

  • Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytology 185:45–106

    CAS  Google Scholar 

  • Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132(12):2685–2695

    Article  PubMed  CAS  Google Scholar 

  • Tartakoff AM (1994) Signal transduction through growth factor receptors. Nagoya: Elsevier Science and Technology

    Google Scholar 

  • Tashiro K, Hagiya M, Nishizawa T, Seki T, Shimonishi M, Shimizu S et al (1990) Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc Natl Acad Sci USA 87(8):3200–3204

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194(1):114–128

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of ph and nitric oxide. Mol Biol Cell 13(8):2909–2918

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S et al (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290(6):C1487–1494

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267(1):107–114

    Article  PubMed  CAS  Google Scholar 

  • Templeton TJ, Hauschka SD (1992) FGF-mediated aspects of skeletal muscle growth and differentiation are controlled by a high affinity receptor, FGFR1. Dev Biol 154(1):169–181

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass JJ et al (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275(51):40235–40243

    Article  PubMed  CAS  Google Scholar 

  • Tortorella LL, Milasincic DJ, Pilch PF (2001) Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J Biol Chem 276(17):13709–13717

    PubMed  CAS  Google Scholar 

  • Tsang M, Dawid IB (2004) Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Science STKE 2004(228):pe17

    Google Scholar 

  • Uruno T, Oki J, Ozawa K, Miyakawa K, Ueno H, Imamura T (1999) Distinct regulation of myoblast differentiation by intracellular and extracellular fibroblast growth factor-1. Growth Factors 17(2):93–113

    PubMed  CAS  Google Scholar 

  • Vainikka S, Joukov V, Klint P, Alitalo K (1996) Association of a 85-kDa Serine Kinase with Activated Fibroblast Growth Factor Receptor-4. J Biol Chem 271(3):1270–1273

    Article  PubMed  CAS  Google Scholar 

  • Vainikka S, Joukov V, Wennstrom S, Bergman M, Pelicci PG, Alitalo K (1994) Signal transduction by fibroblast growth factor receptor-4 (FGFR-4). Comparison with FGFR-1. J Biol Chem 269(28):18320–18326

    PubMed  CAS  Google Scholar 

  • Velleman SG (2000) The role of the extracellular matrix in skeletal development. Poult Sci 79(7):985–989

    PubMed  CAS  Google Scholar 

  • Velleman SG, Liu C, Coy CS, McFarland DC (2006) Effects of glypican-1 on turkey skeletal muscle cell proliferation, differentiation and fibroblast growth factor 2 responsiveness. Dev Growth Differ 48(4):271–276

    Article  PubMed  CAS  Google Scholar 

  • Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature Med 12(6):642–649

    Article  PubMed  CAS  Google Scholar 

  • Volonte D, Liu Y, Galbiati F (2004) The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. FASEB J 19(2):237–239

    PubMed  Google Scholar 

  • Wagner KR, Liu X, Chang X, Allen RE (2005) Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci USA 102(7):2519–2524

    Article  PubMed  CAS  Google Scholar 

  • Wagner KR, McPherron AC, Winik N, Lee SJ (2002) Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann of Neurol 52(6):832–836

    Article  CAS  Google Scholar 

  • Wagner KR (2005) Muscle regeneration through myostatin inhibition. Curr Opin Rheumatol 17(6):720–724

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273(5273):359–361

    Article  PubMed  CAS  Google Scholar 

  • Wang JK, Gao G, Goldfarb M (1994) Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol Cell Biol 14(1):181–188

    PubMed  CAS  Google Scholar 

  • Wehling M, Cai B, Tidball JG (2000) Modulation of myostatin expression during modified muscle use. FASEB J 14(1):103–110

    PubMed  CAS  Google Scholar 

  • Weidner KM, Arakaki N, Hartmann G, Vandekerckhove J, Weingart S, Rieder H et al (1991) Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 88(16):7001–7005

    Article  PubMed  CAS  Google Scholar 

  • Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125(18):3615–3623

    PubMed  CAS  Google Scholar 

  • Wickert L, Abiaka M, Bolkenius U, Gressner AM (2004) Corticosteroids stimulate selectively transforming growth factor (TGF)-[beta] receptor type III expression in transdifferentiating hepatic stellate cells. J Hepatol 40(1):69–76

    Article  PubMed  CAS  Google Scholar 

  • Wilkie RS, O’Neill IE, Butterwith SC, Duclos MJ, Goddard C (1995) Regulation of chick muscle satellite cells by fibroblast growth factors: interaction with insulin-like growth factor-I and heparin. Growth Regul 5(1):18–27

    PubMed  CAS  Google Scholar 

  • Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE (2005) Signaling satellite-cell activation in skeletal muscle: Markers, models, stretch, and potential alternate pathways. Muscle Nerve 31(3):283–300

    Article  PubMed  CAS  Google Scholar 

  • Wrana JL, Attisano L, Wieser R, Ventura F, Massague J (1994) Mechanism of activation of the TGF-beta receptor. Nature 370(6488):341–347

    Article  PubMed  CAS  Google Scholar 

  • Wright TJ, Ladher R, McWhirter J, Murre C, Schoenwolf GC, Mansour SL (2004) Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol 269(1):264–275

    Article  PubMed  CAS  Google Scholar 

  • Wyzykowski JC, Winata TI, Mitin N, Taparowsky EJ, Konieczny SF (2002) Identification of novel MyoD gene targets in proliferating myogenic stem cells. Mol Cell Biol 22(17):6199–6208

    Article  PubMed  CAS  Google Scholar 

  • Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A et al (1999) FGF-19, a novel fibroblast growth factor with unique specificity for fgfr4. Cytokine 11(10):729–735

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Weinstein M, Li C, Deng C-X (1999) Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res 296(1):33–43

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z (2007) Myostatin blockade: a new way to enhance skeletal muscle repair in old age? Mol Ther 15(8):1407–1409

    Google Scholar 

  • Yablonka-Reuveni Z, Anderson JE (2006) Satellite cells from dystrophic (Mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn 235(1):203–212

    Google Scholar 

  • Yablonka-Reuveni Z, Balestreri TM, Bowen-Pope DF (1990) Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J Cell Biol 111(4):1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Day K, Vine A, Shefer G (2007) Defining the transcriptional signature of skeletal muscle stem cells. J Anim Sci [Epub ahead of print; Sept 18, 2007]

    Google Scholar 

  • Yablonka-Reuveni Z, Quinn LS, Nameroff M (1987) Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev Biol 119(1):252–259

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Rivera AJ (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164(2):588–603

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Rivera AJ (1997a) Influence of PDGF-BB on proliferation and transition through the MyoD-myogenin-MEF2A expression program during myogenesis in mouse C2 myoblasts. Growth Factors 15(1):1–27

    Article  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Rivera AJ (1997b) Proliferative dynamics and the role of FGF2 during myogenesis of rat satellite cells on isolated fibers. Basic Appl Myology 7(3&4):189–202

    Google Scholar 

  • Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999a) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210(2):440–455

    Article  CAS  Google Scholar 

  • Yablonka-Reuveni Z, Seger R, Rivera AJ (1999b) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47(1):23–42

    CAS  Google Scholar 

  • Yablonka-Reuveni Z, Seifert RA (1993) Proliferation of chicken myoblasts is regulated by specific isoforms of platelet-derived growth factor: Evidence for differences between myoblasts from mid and late stages of embryogenesis. Dev Biol 156(2):307–318

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z (2004) Isolation and culture of myogenic stem cells. In: Lanza R, Blau H, Melton D, Moore M, Thomas ED, Verfaillie C, et al., (eds) Handbook of Stem Cells – Vol 2: Adult and Fetal Stem Cells. San Diego: Elsevier – Academic Press, pp. 571–580

    Google Scholar 

  • Yaffe D, Saxel O (1977) A myogenic cell line with altered serum requirements for differentiation. Differentiation 7(3):159–166

    Article  PubMed  CAS  Google Scholar 

  • Yaffe D (1969) Cellular aspects of muscle differentiation in vitro. Curr Top Dev Biol 4:37–77

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Tatsumi R, Kikuiri T, Okamoto S, Nonoshita S, Mizunoya W et al al (2006) Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle & Nerve; Epub ahead of print:NA

    Google Scholar 

  • Yang J, Ratovitski T, Brady JP, Solomon MB, Wells KD, Wall RJ (2001) Expression of myostatin pro domain results in muscular transgenic mice. Mol Reprod Dev 60(3):351–361

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhao B (2006) Postnatal expression of myostatin propeptide cDNA maintained high muscle growth and normal adipose tissue mass in transgenic mice fed a high-fat diet. Mol Reprod Dev 73(4):462–469

    Article  PubMed  CAS  Google Scholar 

  • Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64(4):841–848

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Fujisawa-Sehara A, Taki T, Arai K, Nabeshima Y (1996) Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts. J Cell Biol 132(1):181–193

    Article  PubMed  CAS  Google Scholar 

  • Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: A mechanism for self-renewal? J Cell Biol 166(3):347–357

    Article  PubMed  CAS  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: A stem cell that came in from the cold. J Histochem Cytochem 54(11):1177–1191

    Article  PubMed  CAS  Google Scholar 

  • Zeng C, Pesall JE, Gilkerson KK, McFarland DC (2002) The effect of hepatocyte growth factor on turkey satellite cell proliferation and differentiation. Poult Sci 81(8):1191–1198

    PubMed  CAS  Google Scholar 

  • Zhao B, Wall RJ, Yang J (2005) Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 337(1):248–255

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Caretti G, Mitchell S, McKeehan WL, Boskey AL, Pachman LM et al (2006) Fgfr4 Is Required for Effective Muscle Regeneration in vivo: Delineation of a MyoD-Tead2-Fgfr4 Transcriptional Pathway. J Biol Chem 281(1):429–438

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229(2):380–392

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Porter JD, Cheng G, Gong B, Hatala DA, Merriam AP et al (2006) Temporal and spatial mRNA expression patterns of TGF-beta1, 2, 3 and TbetaRI, II, III in skeletal muscles of mdx mice. Neuromuscul Disord 16(1):32–38

    Article  PubMed  Google Scholar 

  • Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN et al (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296(5572):1486–1488

    Article  PubMed  CAS  Google Scholar 

  • Ziv I, Fuchs Y, Preger E, Shabtay A, Harduf H, Zilpa T et al (2006) The human Sef-a isoform utilizes different mechanisms to regulate FGFR signaling pathways and subsequent cell fate. J Biol Chem; Epub ahead of print:M607327200

    Google Scholar 

  • Zuber ME, Zhou Z, Burrus LW, Olwin BB (1997) Cysteine-rich FGF receptor regulates intracellular FGF-1 and FGF-2 levels. J Cell Physiol 170(3):217–227

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shefer, G., Yablonka-Reuveni, Z. (2008). The Ins and Outs of Satellite Cell Myogenesis: The Role of the Ruling Growth Factors. In: Skeletal Muscle Repair and Regeneration. Advances in Muscle Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6768-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6768-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6767-9

  • Online ISBN: 978-1-4020-6768-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics