Skip to main content

High Magnetic Fields in Semiconductor Nanostructures: Spin Effects in Single InAs Quantum Dots

  • Chapter
  • First Online:
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 42))

  • 757 Accesses

Abstract

We present a prominent example how the influence of high magnetic fields can lead to spectacular field induced effects in a semiconductor nanostructure. We observe current steps in the I–V characteristics of a GaAs-AlAs tunnelling structure with self-assembled InAs quantum dots embedded in the AlAs barrier. The steps originate from resonant tunnelling through individual InAs quantum dots. In a magnetic field the Zeeman splitting of the quantized dot states leads to a splitting of each current step in two. The Landé factor deduced from these measurements is in the range g = 0.6... 1.5 depending on the size of the dot and the orientation of the magnetic field. In high magnetic fields (B > 20 T) the current steps evolve into extremely enhanced peaks. The effect observed is explained by a field induced Fermi-edge singularity caused by the Coulomb interaction between the tunnelling electron on the quantum dot and the partly spin-polarized Fermi sea in the Landau quantized three-dimensional emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. E. Itskevich, T. Ihn, A. Thornton, M. Henini, T. J. Foster, P. Moriarty, A. Nogaret, P. H. Beton, L. Eaves and P. C. Main, Phys. Rev. B 54, 16401 (1996).

    Article  CAS  Google Scholar 

  2. T. Suzuki, K. Nomoto, K. Taira and I. Hase, Jpn. J. Appl. Phys. 36, 1917 (1997).

    Article  CAS  Google Scholar 

  3. M. Narihiro, G. Yusa, Y. Nakamura, T. Noda and H. Sakaki, Appl. Phys. Lett. 70, 105 (1997).

    Article  CAS  Google Scholar 

  4. I. Hapke-Wurst, U. Zeitler, H. W. Schumacher, R. J. Haug, K. Pierz and F. J. Ahlers, Semicond. Sci. Technol. 14, L41 (1999).

    Article  CAS  Google Scholar 

  5. A. S. G. Thornton, T. Ihn, P. C. Main, L. Eaves and M. Henini, Appl. Phys. Lett. 73, 354 (1998).

    Article  CAS  Google Scholar 

  6. I. Hapke-Wurst, U. Zeitler, H. Frahm, A. G. M. Jansen, R. J. Haug, and K. Pierz, Phys. Rev. B 62, 12621 (2001).

    Article  Google Scholar 

  7. J.-M. Meyer, I. Hapke-Wurst, U. Zeitler, R. J. Haug, and K. Pierz, physica status solidi(b) 224, 685 (2001).

    Article  CAS  Google Scholar 

  8. I. Hapke-Wurst, U. Zeitler, R. J. Haug, and K. Pierz, Physica E 12, 802 (2002).

    Article  CAS  Google Scholar 

  9. K. A. Matveev and A. I. Larkin, Phys. Rev. B 46, 15337 (1992).

    Article  Google Scholar 

  10. P. C. Main, A. S. G. Thornton, R. J. A. Hill, S. T. Stoddart, T. Ihn, L. Eaves, K. A. Benedict and M. Henini, Phys. Rev. Lett. 84, 729 (2000).

    Article  CAS  Google Scholar 

  11. L. M. Roth und P. N. Argyres, in Semiconductors and Semimetals (Volume 1: Physics of III-V compounds), p159 (Academic Press New York London, 1966).

    Google Scholar 

  12. K. Pierz, Z. Ma, I. Hapke-Wurst, U. F. Keyser, U. Zeitler and R. J. Haug, Physica E, in press.

    Google Scholar 

  13. I. Hapke-Wurst, PhD Thesis, Hannover (2002).

    Google Scholar 

  14. A. A. Kiselev, E. L. Ivchenko, and U. Rössler, Phys. Rev. B 58, 16353 (1998).

    Article  CAS  Google Scholar 

  15. A. K. Geim, P. C. Main, N. La Scala, Jr., L. Eaves, T. J. Foster, P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill and M. A. Pate, Phys. Rev. Lett. 72, 2061 (1994).

    Article  CAS  Google Scholar 

  16. G. D. Mahan, Phys. Rev. 163, 612 (1967); G. D. Mahan, Many-Particle Physics (Plenum, New York, 1981).

    Article  CAS  Google Scholar 

  17. P. Noziéres and C. T. De Dominicis, Phys. Rev. 178, 1097 (1969).

    Article  Google Scholar 

  18. K. D. Schotte and U. Schotte, Phys. Rev. 182, 479 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeitler, U. et al. (2002). High Magnetic Fields in Semiconductor Nanostructures: Spin Effects in Single InAs Quantum Dots. In: Kramer, B. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45618-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45618-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42907-4

  • Online ISBN: 978-3-540-45618-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics