Skip to main content

Physics of the Monopoles in QCD

  • Conference paper
  • First Online:
Particle Physics in the New Millennium

Part of the book series: Lecture Notes in Physics ((LNP,volume 616))

  • 470 Accesses

Abstract

We discuss implications of the recent measurements of the non-Abelian action density associated with the monopoles condensed in the confining phase of gluodynamics. The radius of the monopole determined in terms of the action was found to be small numerically. As far as the condensation of the monopoles is described in terms of a scalar field, a fine tuning is then implied. In other words, a hierarchy exists between the self energy of the monopole and the temperature of the confinement-deconfinement phase transition. The ratio of the two scales is no less than a factor of 10. Moreover, we argue that the hierarchy scale can well eventually extend to a few hundred GeV on the ultraviolet side. The corresponding phenomenology is discussed, mostly within the polymer picture of the monopole condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Nambu, Phys. Rev. D 10, 3262 (1974); G.’ t Hooft, in High Energy Physics, Editorici Compositori, Bologna, (1975); S. Mandelstam, Phys. Rep. C 23, 516 (1976).

    ADS  Google Scholar 

  2. M.N. Chernodub, M.I. Polikarpov, in “Cambridge 1997, Confinement, duality, and nonperturbative aspects of QCD”, p. 387; hep-th/9710205; T. Suzuki, Prog. Theor. Phys. Suppl. 131, 633 (1998); A. Di Giacomo, Prog. Theor. Phys. Suppl. 131, 161 (1998).

    Google Scholar 

  3. M.N. Chernodub, F.V. Gubarev, M.I. Polikarpov, V.I. Zakharov, Nucl. Phys. B 592, 107 (2000); Nucl. Phys. B 600, 163 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  4. M.N. Chernodub, F.V. Gubarev, M.I. Polikarpov, V.I. Zakharov, Phys. Atom. Nucl. 64, 561 (2001).

    Article  ADS  Google Scholar 

  5. V.G. Bornyakov et al, hep-lat/0103032; V.A. Belavin, M.I. Polikarpov, A.I. Veselov, hep-lat/0110011.

    Google Scholar 

  6. K. Symanzik, in Local Quantum Theory, (1969) Varenna International School of Physics, Course XLV, p. 152.

    Google Scholar 

  7. M. Stone, P.R. Thomas, Phys. Rev. Lett. 41, 351 (1978); S. Samuel, Nucl. Phys. B 154, 62 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  8. C. A. De Carvalhom, S. Caracciolo, J. Frohlich, Nucl. Phys. B 215, 209 (1983).

    Article  ADS  Google Scholar 

  9. A.M. Polyakov, Phys. Lett. B 59, 82 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Shiba, T. Suzuki, Phys. Lett. B 343, 315 (1995).

    Article  ADS  Google Scholar 

  11. T. Suzuki, H. Shiba, Phys. Lett. B 351, 519 (1995); S. Kato et al, Nucl. Phys. B 520, 323 (1998); M.N. Chernodub et al, Phys. Rev. D 62, 094506 (2000).

    Article  ADS  Google Scholar 

  12. J. Ambjorn, B. Durhuus, Th. Johnsson, Quantum Geometry, Cambridge University Press (1997), Cambridge Monographs on Mathematical Physics.

    Google Scholar 

  13. G. Parisi, Statistical Field Theory, Addison-Wesley, (1988).

    Google Scholar 

  14. F.V. Gubarev, V. I. Zakharov, Nucl. Phys. Proc. Suppl. 106, 622 (2002); Int. J. Mod. Phys. A 17, 157 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Suzuki, I. Yotsuyanagi, Phys. Rev. D 42, 4257 (1990); G.S. Bali, V. Bornyakov, M. Mueller-Preussker, K. Schilling, Phys. Rev. D 54, 2863 (1996).

    Article  ADS  Google Scholar 

  16. V. Bornyakov et al, hep-lat/0111042.

    Google Scholar 

  17. V. Bornyakov, M. Muller-Preussker, hep-lat/0110209.

    Google Scholar 

  18. T.L. Ivanenko, A.V. Pochinsky, M.I. Polikarpov, Phys. Lett. B 252, 631 (1990); S. Kitahara, Y. Matsubara, T. Suzuki, Progr. Theor. Phys. 93, 1 (1995); A. Hart, M. Teper, Phys. Rev. D 58, 014504 (1998).

    Article  ADS  Google Scholar 

  19. K. Ishiguro, Y. Nakatani, T. Suzuki, Prog. Theor. Phys. Suppl. 138, 35 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zakharov, V.I. (2003). Physics of the Monopoles in QCD. In: Trampetić, J., Wess, J. (eds) Particle Physics in the New Millennium. Lecture Notes in Physics, vol 616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36539-7_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-36539-7_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00711-1

  • Online ISBN: 978-3-540-36539-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics