Skip to main content

A model for periodic structures in turbulent boundary layers

  • Session I - Theory
  • Conference paper
  • First Online:
The Role of Coherent Structures in Modelling Turbulence and Mixing

Part of the book series: Lecture Notes in Physics ((LNP,volume 136))

  • 181 Accesses

Abstract

Many experimental studies emphasize the importance of periodic recognizable flow patterns for the transport process in turbulent flow. In this paper a model is formulated for the large scale part of the turbulent motion. The experimental observation that the structures in the outer region run in phase with the bursting cycle in the wall layer forms the basis of the model. The wall layer, where viscous stresses are important and the outer region where the inviscid approximation holds, are treated separately. The small scale part of the turbulent motion, which is assumed to be important in localized regions only (bursts regions), couples the wall region and the outer region.

The mean wall shear stress calculated with this model agrees reasonably well with the empirical formulae for the friction coefficient even for the more complex case of the transpired boundary layer. The main conclusion of the model calculations is that the transport of momentum can be very well explained in terms of turbulent structures. The model clearly illustrates how momentum is transported in three stages: (i) Thin elongated layers near the wall slow down as the result of viscous forces. (ii) The retarded fluid-is ejected in localized regions or bursts. (iii) The large scale motion in the outer region takes over the transport.

In this paper special attention will be given to the function of the longitudinal vortices in the wall layer. In turns out that they hardly influence the turbulent exchange, but that they are very important for the creation of locally unstable regions. It is believed that the strength of the longitudinal vortices is influenced by the large scale structures in the outer region. By this mechanism the large scales in the outer region can influence the burst frequency.

In a discussion some ideas are presented about what this can mean for special flow phenomena as: drag reduction by polymer solutions or along compliant walls and rapid shear stress change along curved walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton, E., (1976). The modelling of large eddies in a two-dimensional shear layer, J. Fluid Mech., 76, 561.

    Article  MATH  ADS  Google Scholar 

  • Bark, F.H., (1975). On the wave structure of the wall region of a turbulent boundary layer, J. Fluid Mech., 70, 229.

    Article  ADS  Google Scholar 

  • Beljaars, A.C.M., (1979). A model for turbulent exchange in boundary layers, Ph.D. thesis, Eindhoven University of Technology, Eindhoven, Netherlands.

    Google Scholar 

  • Beljaars, A.C.M., Krishna Prasad, K. and Vries, D.A. de, (1980). A structural model for turbulent exchange in boundary layers, submitted to J. Fluid Mech.

    Google Scholar 

  • Blackwelder, R.F. and Eckelmann, H., (1979). Streamwise vortices associated with the bursting phenomenon, J. Fluid Mech., 24, 577.

    Article  ADS  Google Scholar 

  • Blackwelder, R.F., and Kaplan, R.E., (1972). The intermittent structure of the wall region of a turbulent boundary layer, Univ. S. Calif. Rep. USCAE, 1-22.

    Google Scholar 

  • Blackwelder, R.F., and Kaplan, R.E., (1976). On the wall structure of turbulent boundary layers, J. Fluid Mech., 76, 89.

    Article  ADS  Google Scholar 

  • Blackwelder, R.F., and Kovasznay, L.S.G., (1972). Time scales and correlation in a turbulent boundary layer, Phys. Fluids, 15, 1545.

    Article  ADS  Google Scholar 

  • Bradshaw, P., (1973). Effects of streamline curvature on turbulent flow. AGARDograph No. 169.

    Google Scholar 

  • Bradshaw, P., (1973). The strategy of calculation methods for complex turbulent flows, Imperial College Aero report 73-05.

    Google Scholar 

  • Brodkey, R.S., Wallace, J.M., and Eckelmann, H., (1974). Some Properties of Truncated Turbulence Signals in Bounded Shear Flows. J. Fluid Mech., 63, 209.

    Article  ADS  Google Scholar 

  • Brown, G.L., and Roshko, A., (1974). On density effects in turbulent mixing layers, J. Fluid Mech., 64, 775.

    Article  ADS  Google Scholar 

  • Brown, G.L., and Thomas, A.S.W., (1977). Large structures in a turbulent boundary layer, Phys. Fluids, 20, S243.

    Article  ADS  Google Scholar 

  • Bushnell, O.M., J.N. Hefner and R.L. Ash, (1977). Compliant wall drag reduction for turbulent boundary layers. Phys. Fluids, 20, S31.

    Article  ADS  Google Scholar 

  • Cebeci, T., and Smith, A.M.O., (1974). Analysis of turbulent boundary layers, Academic Press, New York.

    MATH  Google Scholar 

  • Corino, E.R., and Brodkey, R.S., (1969). A visual investigation in the wall region of turbulent flow, J. Fluid, Mech., 37, 1.

    Article  ADS  Google Scholar 

  • Deardorff, J.W., (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds number, J. Fluid Mech., 41, 453.

    Article  MATH  ADS  Google Scholar 

  • Eckelmann, H., (1974). The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow, J. Fluid Mech., 65, 439

    Article  ADS  Google Scholar 

  • Einstein, H.A., and Li, H., (1956). The viscous sublayer along a smooth boundary, J. Engng. Mech. Div. Am. Soc. Civ. Engrs., 82 (EM2), 945.

    Google Scholar 

  • Falco, R.E., (1977). Coherent motion in the outer region of turbulent boundary layers, Phys. Fluids, 20, S124.

    Article  ADS  Google Scholar 

  • Fendell, F.E., (1972). Singular perturbation and turbulent shear flow near walls, J. Astronautical Sc., 20, 129.

    ADS  Google Scholar 

  • Fortuna, G. and Hanratty, T.J., (1972). The influence of drag-reducing polymers on turbulence in the viscous sublayer, J. Fluid Mech., 53, 575.

    Article  ADS  Google Scholar 

  • Hanratty, T.J., (1956). Turbulent exchange of mass and momentum with a boundary, A.I.Ch.E.Je, 2, 359.

    Google Scholar 

  • Hinze, J.O., (1975). Turbulence, McGrawhill, New York, 2nd ed.

    Google Scholar 

  • Johnston, J.P., (1972). The Suppression of shear-layer turbulence in rotating systems. ARARD Conf. Proc. 93.

    Google Scholar 

  • Kim, H.T., Kline, S.J., and Reynolds, W.C., (1971). The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech., 50, 133.

    Article  ADS  Google Scholar 

  • Kim, J. & Moin, P., (1979). Large eddy simulation of turbulent channel flow — Illiac IV Calculation, AGARD Symposium on Turbulent Boundary Layer-Experiment, Theory, and Modelling.

    Google Scholar 

  • Kline, S.J., (1968). Discussion, Proc. of AFOSR-IFP-Stanford Conf. on computation of Turbulent Boundary Layers. Ed: S.J. Kline et al., Vol. 1 p. 527.

    Google Scholar 

  • Kline, S.J., Reynolds, W.C., Schraub, F.A. and Rundstadler, P.W., (1967). The structure of turbulent boundary layers. J. Fluid Mech., 30, 741.

    Article  ADS  Google Scholar 

  • Kovasznay, L.S.G., Kibens, V., and Blackwelder, R.F., (1970). Large scale motion in the intermittent region of a turbulent boundary layer, J. Fluid Mech., 41, 283.

    Article  ADS  Google Scholar 

  • Landahl, M.T., (1965). A wave-guide model for turbulent shear flow, NASA, CR-317.

    Google Scholar 

  • Landahl, M.T., (1967). A wave-guide model for turbulent shear flow, J. Fluid Mech., 29, 441.

    Article  MATH  ADS  Google Scholar 

  • Landahl, M.T., (1975). Wave breakdown and turbulence, SIAM, J. Appl. Mech., 28, 735.

    Article  MATH  Google Scholar 

  • Laufer, J., and Badri Narayanan, M.A., (1971). The mean period of the production mechanism in a boundary layer, Phys. Fluids, 14, 182.

    Article  ADS  Google Scholar 

  • Mager, A., (1964). Three-dimensional laminar boundary layers in “Theory of Laminar flows”, Ed. F.K. Moore, Princeton University Press.

    Google Scholar 

  • Mellor, G.L., (1972). The large Reynolds number asymptotic theory of turbulent boundary layers. Int. J. Engng. Sci., 10, 851.

    Article  MathSciNet  Google Scholar 

  • Mizushina, T., and Usui, H., (1977). Reduction of eddy diffusion for momentum and heat in viscoleastic fluid flow in a circular tube. Phys. Fluids, 20, S100.

    Article  ADS  Google Scholar 

  • Nychas, S.G., Hershey, H.C., and Brodkey, R.S., (1973). A visual study of turbulent flow, J. Fluid Mech., 61, 513.

    Article  ADS  Google Scholar 

  • Offen, G.R., and Kline, S.J., (1974). Combined dye-streak and hydrogen bubble visual observations of a turbulent boundary layer, J. Fluid Mech., 62, 223.

    Article  ADS  Google Scholar 

  • Offen, G.R., and Kline, S.J., (1975). A proposed model of the bursting process in turbulent boundary layers, J. Fluid Mech., 70, 209.

    Article  ADS  Google Scholar 

  • Orszag, S.A., (1978). Prediction of compliant wall drag reduction-Part II, Cambridge Hydrodynamics Report 11.

    Google Scholar 

  • Praturi, A.K., and Brodkey, R.S., (1978). A stereoscopic visual study of coherent structures in turbulent shear flow, J. Fluid Mech., 89, 251.

    Article  ADS  Google Scholar 

  • Rajagopalan, S., and Antonia, R.A., (1979). Some properties of the large structures in a fully developed turbulent duct flow, Phys. Fluids, 22, 614.

    Article  ADS  Google Scholar 

  • Ramapriyan, B.R. and B.G. Shivaprasad, (1977). Mean flow measurements in turbulent boundary layers along mildly curved surfaces. AIAA Journal, 15, 189.

    Article  ADS  Google Scholar 

  • Ramapriyan, B.R., and B.G. Shivaprasad, (1978). The structure of turbulent boundary layers along mildly curved surfaces, J. Fluid Mech., 76, 561.

    Google Scholar 

  • Schumann, U. (1975). Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comp. Phys., 18, 376.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Senda, M., Susuki, K. and Sats, T., (1979). Turbulence structure related to the heat transfer in a turbulent boundary layer with injection, 2nd symposium on Turbulent Shear Flows, London, 1979.

    Google Scholar 

  • Shen, S.F., (1964). Stability of laminar flows, in: Theory of laminar flows, edited by F.K. Moore, Princeton Univ. Press, New Jersey.

    Google Scholar 

  • Shubert, G., and Corcos, G.M., (1967). The dynamics of turbulence near a wall according to a linear model, J. Fluid Mech., 29, 113.

    Article  ADS  Google Scholar 

  • Sternberg, J., (1962). A theory for the viscous sublayer of a turbulent flow, J. Fluid Mech., 13, 241.

    Article  MATH  ADS  Google Scholar 

  • Sternberg, J., (1968). Discussion, Proc. of AFOSR-IFP-Stanford Conf. on computations of turbulent boundary layers. Ed: S.J. Kline et al., Vol. 1, p. 411.

    Google Scholar 

  • Stuart, J.T., (1965). The production of intense shear layers by vortex stretching and convection, AGARD Rep. 514.

    Google Scholar 

  • Tennekes, H., and Lumley, J.L., (1974). A first course in turbulence, MIT Press, Cambridge.

    Google Scholar 

  • Virk, P.S., (1975). Drag reduction fundamentals, AICHE J., 21, 625.

    Article  Google Scholar 

  • Willmarth, W.W., (1975). Structure of turbulence in boundary layers, Adv. App. Mech., vol. 15, p. 159., Academic Press.

    Article  Google Scholar 

  • Willmarth, W.W., and Woodridge, G.E., (1962). Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer, J. Fluid Mech., 14, 187.

    Article  MATH  ADS  Google Scholar 

  • Witting, H., (1958). Ober den Einfluss der Strömlinien-Krümmung auf die stabilität Laminarer Strömingen, Arch. Rat. Mech. Anal., 2, No. 3, 243.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Jimenez

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Beljaars, A.C.M., Krishna Prasad, K. (1981). A model for periodic structures in turbulent boundary layers. In: Jimenez, J. (eds) The Role of Coherent Structures in Modelling Turbulence and Mixing. Lecture Notes in Physics, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10289-2_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-10289-2_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10289-2

  • Online ISBN: 978-3-540-38425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics