Skip to main content

Self-correcting Self-assembly: Growth Models and the Hammersley Process

  • Conference paper
DNA Computing (DNA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Included in the following conference series:

Abstract

This paper extends the stochastic analysis of self assembly in DNA-based computation. The new analysis models an error-correcting technique called pulsing which is analogous to checkpointing in computer operation. The model is couched in terms of the well-known tiling models of DNA-based computation and focuses on the calculation of computation times, in particular the times to self assemble rectangular structures. Explicit asymptotic results are found for small error rates q, and exploit the connection between these times and the classical Hammersley process. Specifically, it is found that the expected number of pulsing stages needed to complete the self assembly of an N ×N square lattice is asymptotically \(2N\sqrt{q}\) as N →∞ within a suitable scaling. Simulation studies are presented which yield performance under more general assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baryshnikov, Y., Coffman, E., Momčilović, P.: DNA-based computation times. In: Proc. of the Tenth International Meeting on DNA Computing, Milan, Italy (2004)

    Google Scholar 

  2. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proc. ACM Symp. Th. Comput., pp. 740–748 (2001)

    Google Scholar 

  3. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In: Proc. ACM Symp. Th. Comput., pp. 459–468 (2001)

    Google Scholar 

  4. Winfree, E.: Complexity of restricted and unrestricted models of molecular computation. In: Lipton, R., Baum, E. (eds.) DNA Based Computing, pp. 187–198. Am. Math. Soc., Providence, RI (1996)

    Google Scholar 

  5. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanés, P.M., Rothemund, P.: Combinatorial optimization problems in self-assembly. In: Proc. ACM Symp. Th. Comput., Montreal, Canada, pp. 23–32 (2002)

    Google Scholar 

  6. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Wasserman, H.: Linear self-assemblies: Equilibria, entropy, and convergence rates. In: Elaydi, Ladas, Aulbach (eds.) New progress in difference equations. Taylor & Francis, Abington (2004)

    Google Scholar 

  7. Baryshnikov, Y., Coffman, E., Momčilović, P.: Incremental self-assembly in the fluid limit. In: Proc. 38th Ann. Conf. Inf. Sys. Sci., Princeton, NJ (2004)

    Google Scholar 

  8. Baryshnikov, Y., Coffman, E., Winkler, P.: Linear self-assembly and random disjoint edge selection. Technical Report 03-1000, Electrical Engineering Dept., Columbia University (2004)

    Google Scholar 

  9. Baryshnikov, Y., Coffman, E., Momčilović, P.: Phase transitions and control in self assembly. In: Proc. Foundations of Nanoscience: Self-Assembled Architectures and Devices, Snowbird, UT (2004)

    Google Scholar 

  10. Coffman, J.E.G., Flatto, L., Wright, P.E.: A stochastic checkpoint optimization problem. SIAM J. Comput. 22, 650–659 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, H.: Dominoes and AEA case of the decision problem. In: Proc. of the Symposium in the Mathematical Theory of Automata. Polytechnic Press, Brooklyn (1963)

    Google Scholar 

  12. Berger, R.: The undecidability of the domino problem. In: Memoirs of the American Mathematical Society, vol. 66 (1966)

    Google Scholar 

  13. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, Pasadena, CA (1998)

    Google Scholar 

  14. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  15. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Chen, H.L., Goel, A.: Error free self-assembly with error prone tiles. In: Proceedings of the Tenth International Meeting on DNA Based Computers, Milan, Italy (2004)

    Google Scholar 

  17. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational dna tiling assemblies. In: Proceedings of the Tenth International Meeting on DNA Based Computers. LNCS, pp. 293–307. Springer, New York (2004)

    Google Scholar 

  18. Chen, H.L., Cheng, Q., Goel, A., Huang, M.-D., de Espanes, P.M.: Invadable self-assembly: Combining robustness with efficiency. In: ACM-SIAM Symposium on Discrete Algorithms (2004)

    Google Scholar 

  19. Fujibayashi, K., Murata, S.: A method of error suppression for self-assembling DNA tiles. In: Proceedings of the Tenth International Meeting on DNA Based Computers. LNCS, pp. 284–293. Springer, New York (2004)

    Google Scholar 

  20. Aldous, D., Diaconis, P.: Hammersley’s interacting particle process and longest increasing subsequences. Probab. Th. Rel. Fields 103, 199–213 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baryshnikov, Y., Coffman, E., Yimwadsana, T.: Analysis of self-correcting self-assembly growth models. Technical Report 03-1001, Electrical Engineering Dept., Columbia University (2005)

    Google Scholar 

  22. Mao, C., Sun, W., Seeman, N.C.: Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baryshnikov, Y., Coffman, E., Seeman, N., Yimwadsana, T. (2006). Self-correcting Self-assembly: Growth Models and the Hammersley Process. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_1

Download citation

  • DOI: https://doi.org/10.1007/11753681_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics