Skip to main content
Log in

Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

We previously showed that the expression of ENO1 (enolase) in the fungal pathogen Candida albicans is critical for cell growth. In this study, we investigate the contribution of the ENO1 gene to virulence. We conducted our functional study of ENO1 in C. albicans by constructing an eno1/eno1 null mutant strain in which both ENO1 alleles in the genome were knockouted with the SAT1 flipper cassette that contains the nourseothricin-resistance marker. Although the null mutant failed to grow on synthetic media containing glucose, it was capable of growth on media containing yeast extract, peptone, and non-fermentable carbon sources. The null mutant was more susceptible to certain antifungal drugs. It also exhibited defective hyphal formation, and was avirulent in BALB/c mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angiolella, L., Micocci, M.M., D’Alessio, S., Girolamo, A., Maras, B., and Cassone, A. 2002. Identification of major glucan-associated cell wall proteins of Candida albicans and their role in fluconazole resistance. Antimicrob. Agents Chemother. 46, 1688–1694.

    Article  PubMed  CAS  Google Scholar 

  • Arguelles, J.C., Rodriguez, T., and Alvarez-Peral, F.J. 1999. Trehalose hydrolysis is not required for human serum-induced dimorphic transition in Candida albicans: evidence from a tps1/tps1 mutant deficient in trehalose synthesis. Res. Microbiol. 150, 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Baron, U., Gossen, M., and Bujard, H. 1997. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res. 25, 2723–2729.

    Article  PubMed  CAS  Google Scholar 

  • Baron, U., Schnappinger, D., Helbl, V., Gossen, M., Hillen, W., and Bujard, H. 1999. Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes. Proc. Natl. Acad. Sci. USA 96, 1013–1018.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.G., Yang, Y.L., Cheng, H.H., Su, C.L., Huang, S.F., Chen, C.T., Liu, Y.T., Su, I.J., and Lo, H.J. 2006. Non-lethal Candida albicans cph1/cph1 efg1/efg1 transcription factor mutant establishing restricted zone of infection in a mouse model of systemic infection. Int. J. Immunopathol. Pharmacol. 19, 561–565.

    PubMed  CAS  Google Scholar 

  • Chen, C.G., Yang, Y.L., Tseng, K.Y., Shih, H.I., Liou, C.H., Lin, C.C., and Lo, H.J. 2009. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans. Fungal Genet. Biol. 46, 714–720.

    Article  PubMed  CAS  Google Scholar 

  • Chibana, H., Uno, J., Cho, T., and Mikami, Y. 2005. Mutation in IRO1 tightly linked with URA3 gene reduces virulence of Candida albicans. Microbiol. Immunol. 49, 937–939.

    PubMed  CAS  Google Scholar 

  • Clinical Laboratory Standards Institute (CLSI). 1997. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. M27A, Wayne, PA, USA.

    Google Scholar 

  • De Backer, M.D., Nelissen, B., Logghe, M., Viaene, J., Loonen, I., Vandoninck, S., de Hoogt, R., Dewaele, S., Simons, F.A., Verhasselt, P., and et al. 2001. An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans. Nat. Biotechnol. 19, 235–241.

    Article  PubMed  Google Scholar 

  • Eroles, P., Sentandreu, M., Elorza, M.V., and Sentandreu, R. 1997. The highly immunogenic enolase and Hsp70p are adventitious Candida albicans cell wall proteins. Microbiology 143, 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Feo, S., Arcuri, D., Piddini, E., Passantino, R., and Giallongo, A. 2000. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett. 473, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Jong, A.Y., Chen, S.H., Stins, M.F., Kim, K.S., Tuan, T.L., and Huang, S.H. 2003. Binding of Candida albicans enolase to plasmin (ogen) results in enhanced invasion of human brain microvascular endothelial cells. J. Med. Microbiol. 52, 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Keren, P., George, J., Shaish, A., Levkovitz, H., Janakovic, Z., Afek, A., Goldberg, I., Kopolovic, J., Keren, G., and Harats, D. 2000. Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptor-deficient mice: establishment of a combined model and association with heat shock protein 65 immunity. Diabetes 49, 1064–1069.

    Article  PubMed  CAS  Google Scholar 

  • Kim, R.Y. and Wistow, G.J. 1993. Expression of the duck alpha-enolase/tau-crystallin gene in transgenic mice. FASEB J. 7, 464–469.

    PubMed  CAS  Google Scholar 

  • Klingspor, L., Stintzing, G., and Tollemar, J. 1997. Deep Candida infection in children with leukaemia: clinical presentations, diagnosis and outcome. Acta Paediatr. 86, 30–36.

    Article  PubMed  CAS  Google Scholar 

  • Lo, H.J., Kohler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Lo, H.J., Wang, J.S., Lin, C.Y., Chen, C.G., Hsiao, T.Y., Hsu, C.T., Su, C.L., Fann, M.J., Ching, Y.T., and Yang, Y.L. 2005. Efg1 involved in drug resistance by regulating the expression of ERG3 in Candida albicans. Antimicrob. Agents Chemother. 49, 1213–1215.

    Article  PubMed  CAS  Google Scholar 

  • Mason, A.B., Buckley, H.R., and Gorman, J.A. 1993. Molecular cloning and characterization of the Candida albicans enolase gene. J. Bacteriol. 175, 2632–2639.

    PubMed  CAS  Google Scholar 

  • McAlister, L. and Holland, M.J. 1982. Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes. J. Biol. Chem. 257, 7181–7188.

    PubMed  CAS  Google Scholar 

  • Miceli, M.H., Bernardo, S.M., and Lee, S.A. 2009. In vitro analyses of the combination of high-dose doxycycline and antifungal agents against Candida albicans biofilms. Int. J. Antimicrob. Agents 34, 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Montagnoli, C., Sandini, S., Bacci, A., Romani, L., and La Valle, R. 2004. Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis. Med. Mycol. 42, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, H., Mio, T., Nagahashi, S., Kokado, M., Arisawa, M., and Aoki, Y. 2000. Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect. Immun. 68, 6712–6719.

    Article  PubMed  CAS  Google Scholar 

  • Nesland, J.M., Holm, R., Johannessen, J.V., and Gould, V.E. 1988. Neuroendocrine differentiation in breast lesions. Pathol. Res. Pract. 183, 214–221.

    Article  PubMed  CAS  Google Scholar 

  • Niedenthal, R., Riles, L., Guldener, U., Klein, S., Johnston, M., and Hegemann, J.H. 1999. Systematic analysis of S. cerevisiae chromosome VIII genes. Yeast 15, 1775–1796.

    Article  PubMed  CAS  Google Scholar 

  • Pitarch, A., Abian, J., Carrascal, M., Sanchez, M., Nombela, C., and Gil, C. 2004. Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics 4, 3084–3106.

    Article  PubMed  CAS  Google Scholar 

  • Plow, E.F. and Das, R. 2009. Enolase-1 as a plasminogen receptor. Blood 113, 5371–5372.

    Article  PubMed  CAS  Google Scholar 

  • Plow, E.F., Freaney, D.E., Plescia, J., and Miles, L.A. 1986. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J. Cell Biol. 103, 2411–2420.

    Article  PubMed  CAS  Google Scholar 

  • Porter, J.D., Khanna, S., Kaminski, H.J., Rao, J.S., Merriam, A.P., Richmonds, C.R., Leahy, P., Li, J., and Andrade, F.H. 2001. Extraocular muscle is defined by a fundamentally distinct gene expression profile. Proc. Natl. Acad. Sci. USA 98, 12062–12067.

    Article  PubMed  CAS  Google Scholar 

  • Reuss, O., Vik, A., Kolter, R., and Morschhauser, J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Rudner, G., Katar, M., and Maisel, H. 1990. Enolase in the avian and turtle lens. Curr. Eye Res. 9, 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, L.L., Liao, W.L., Ghosh, A.K., and Fonzi, W.A. 2005. Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Microbiology 151, 1061–1071.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, F. 2002. Getting started with yeast. Methods Enzymol. 350, 3–41.

    Article  PubMed  CAS  Google Scholar 

  • Sorger, D. and Daum, G. 2003. Triacylglycerol biosynthesis in yeast. Appl. Microbiol. Biotechnol. 61, 289–299.

    PubMed  CAS  Google Scholar 

  • Sundstrom, P. and Aliaga, G.R. 1992. Molecular cloning of cDNA and analysis of protein secondary structure of Candida albicans enolase, an abundant, immunodominant glycolytic enzyme. J. Bacteriol. 174, 6789–6799.

    PubMed  CAS  Google Scholar 

  • Sundstrom, P. and Aliaga, G.R. 1994. A subset of proteins found in culture supernatants of Candida albicans includes the abundant, immunodominant, glycolytic enzyme enolase. J. Infect. Dis. 169, 452–456.

    Article  PubMed  CAS  Google Scholar 

  • Sung, H.J. and Cho, J.Y. 2008. Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB Rep. 41, 615–625.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay, P., Meiner, Z., Galou, M., Heinrich, C., Petromilli, C., Lisse, T., Cayetano, J., Torchia, M., Mobley, W., Bujard, H., and et al. 1998. Doxycycline control of prion protein transgene expression modulates prion disease in mice. Proc. Natl. Acad. Sci. USA 95, 12580–12585.

    Article  PubMed  CAS  Google Scholar 

  • Trumbly, R.J. 1992. Glucose repression in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 6, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Tsuneki, H., Ishizuka, M., Terasawa, M., Wu, J.B., Sasaoka, T., and Kimura, I. 2004. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol. 4, 18.

    Article  PubMed  Google Scholar 

  • Van der Straeten, D., Rodrigues-Pousada, R.A., Goodman, H.M., and Van Montagu, M. 1991. Plant enolase: gene structure, expression, and evolution. Plant Cell 3, 719–735.

    PubMed  Google Scholar 

  • Xin, H., Dziadek, S., Bundle, D.R., and Cutler, J.E. 2008. Synthetic glycopeptide vaccines combining beta-mannan and peptide epitopes induce protection against candidiasis. Proc. Natl. Acad. Sci. USA 105, 13526–13531.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y.L., Chen, H.F., Kuo, T.J., and Lin, C.Y. 2006a. Mutations on CaENO1 in Candida albicans inhibit cell growth in the presence of glucose. J. Biomed. Sci. 13, 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y.L., Lin, Y.H., Tsao, M.Y., Chen, C.G., Shih, H.I., Fan, J.C., Wang, J.S., and Lo, H.J. 2006b. Serum repressing efflux pump CDR1 in Candida albicans. BMC Mol. Biol. 7, 22.

    Article  PubMed  Google Scholar 

  • Yang, Y.L., Wang, C.W., Chen, C.T., Wang, M.H., Hsiao, C.F., and Lo, H.J. 2009. Non-lethal Candida albicans cph1/cph1 efg1/efg1 mutant partially protects mice from systemic infections by lethal wild-type cells. Mycol. Res. 113, 388–390.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Liang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, HC., Hsiao, TY., Chen, CT. et al. Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence. J Microbiol. 51, 345–351 (2013). https://doi.org/10.1007/s12275-013-2577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2577-z

Keywords

Navigation