Skip to main content
Log in

Acetaldehyde inhibits the yeast-to-hypha conversion and biofilm formation in Candida albicans

  • Note
  • Published:
Mycoscience

Abstract

In Candida albicans, alcohol metabolism is implicated in biofilm formation. The alcohol dehydrogenase gene (ADH1) is involved in the conversion of acetaldehyde to ethanol and reported to be downregulated during biofilm formation. C. albicans produces acetaldehyde under both in vivo and in vitro conditions. Mutations in ADH genes result in increased acetaldehyde production in vitro, but studies are lacking on the morphogenetic role(s) of acetaldehyde in C. albicans. We report here that acetaldehyde at a concentration of 7 mM was able to inhibit the conversion from yeast to hyphal forms induced by four standard inducers at 37°C. The hyphal inhibitory concentrations did not adversely affect the growth and viability of C. albicans cells. The same concentration of acetaldehyde also significantly inhibited biofilm development, and only adhered yeast cells were found. We hypothesize that acetaldehyde produced by C. albicans may exert a morphogenetic regulatory role influencing yeast-to-hypha conversion, biofilm formation, dissemination and establishment of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aranda A, del Olmo ML (2004) Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively. Appl Environ Microbiol 70:1913–1922

    Article  PubMed  CAS  Google Scholar 

  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohol. Genes Dev 20:1150–1161

    Article  PubMed  CAS  Google Scholar 

  • Cutler JE (1991) Putative virulence factors of Candida albicans. Annu Rev Microbiol 45:187–218

    Article  PubMed  CAS  Google Scholar 

  • Devkatte AN, Zore GB, Karuppayil SM (2005) Potential of plant oils as inhibitors of Candida albicans growth. FEMS Yeast Res 5:867–873

    Article  PubMed  CAS  Google Scholar 

  • Diamond RD, Clarke RA, Haudenschild CC (1980) Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro. J Clin Invest 66:908–917

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JR (2008) Filament formation in Saccharomyces cerevisiae––a review. Folia Microbiol 1:3–14

    Article  Google Scholar 

  • Gow NA (1997) Germ tube growth of Candida albicans. Curr Top Med Mycol 8:43–55

    PubMed  CAS  Google Scholar 

  • Hazma OJ, Matee MI, Moshi MJ, Simon EN, Mugusi F, Miks FH, Helderman WH, Rijs AJ, van der Ven AJ, Verweij PE (2008) Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis. BMC Microbiol 8:135–143

    Article  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619

    Article  PubMed  CAS  Google Scholar 

  • Hudson DA, Sciascia QL, Sanders RJ, Norris GE, Edwards PJ, Sullivan PA, Farley PC (2004) Identification of the dialyzable serum inducer of germ-tube formation in Candida albicans. Microbiology 150:3041–3049

    Article  PubMed  CAS  Google Scholar 

  • Jokelainen K, Roine RP, Vaananen H, Farkkila M, Salaspuro M (1994) In vitro acetaldehyde formation by human colonic bacteria. Gut 35:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  PubMed  CAS  Google Scholar 

  • Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveria R (2007) Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 6:2429–2436

    Article  PubMed  CAS  Google Scholar 

  • Mosel DD, Dumitru R, Hornby JM, Autkin AL, Nickerson KW (2005) Farnesol concentrations required to block germ tube formation in the presence and absence of serum. Appl Environ Microbiol 71:4938–4940

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee PK, Mohammed S, Chandra J, Kuhn D, Liu S, Antar OS, Munyon R, Mitchell AP, Andes D, Chance MR, Rouabhia M, Ghannoum MA (2006) Alcohol dehydrogenase restricts the ability of pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun 74:3804–3816

    Article  PubMed  CAS  Google Scholar 

  • Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72:3805–3813

    Article  PubMed  CAS  Google Scholar 

  • Odds FC (1994) Candida species and virulence. ASM News 60:313–318

    Google Scholar 

  • Peeters E, Nelis HJ, Coenye T (2008) Comparision of multiple methods for quantification of microbial biofilms grown in microtitre plates. J Microb Methods 72:157–165

    Article  CAS  Google Scholar 

  • Poschl G, Seitz HK (2004) Alcohol and cancer. Alcohol Alcohol 39:155–165

    PubMed  CAS  Google Scholar 

  • Tillonen J, Homann N, Rautio M, Jousimies-Somer H, Salaspuro M (1999) Role of yeasts in the salivary acetaldehyde production from ethanol among risk groups for ethanol-associated oral cavity cancer. Alcohol Clin Exp Res 23:1409–1415

    Article  PubMed  CAS  Google Scholar 

  • Walker-Caprioglio HM, Parks LW (1987) Autoconditioning factor relieves ethanol-induced growth inhibition of Saccharomyces cerevisiae. Appl Environ Microbiol 53:33–35

    PubMed  CAS  Google Scholar 

  • Westwater C, Balish E, Schofield DA (2005) Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot Cell 10:1654–1661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohan Karuppayil.

About this article

Cite this article

Chauhan, N.M., Raut, J.S. & Karuppayil, S.M. Acetaldehyde inhibits the yeast-to-hypha conversion and biofilm formation in Candida albicans . Mycoscience 52, 356–360 (2011). https://doi.org/10.1007/s10267-011-0110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-011-0110-y

Keywords

Navigation