Skip to main content

Ultrasound Processing of Milk and Dairy Products

  • Reference work entry
  • First Online:

Abstract

The application of ultrasound to conventional dairy processes has the potential to provide significant benefits to dairy industry such as possible cost savings and improved product properties. Moreover, the appeal of ultrasound as a processing technique has been regarded safe compared to other emerging technologies. During the past decade, the technology has rapidly emerged as a mild nonthermal processing tool capable of replacing or assisting many conventional dairy processing applications such as inactivation of microbes and enzymes, homogenization and emulsification, creaming, crystallization, and functionality modifications within dairy systems. These aspects are highlighted in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McClements DJ (1995) Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol 6:293–299

    Article  CAS  Google Scholar 

  2. Leong T, Johansson L, Juliano P, McArthur SL, Manasseh R (2013) Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res 52(47):16555–16576

    Article  CAS  Google Scholar 

  3. Ashokkumar M, Mason TJ (2007) Sonochemistry. In: Kirk R, Othmer D (eds) Encyclopedia of chemical technology. John Wiley & Sons, NY

    Google Scholar 

  4. Chandrapala J, Augustin M, McKinnon I, Udabage P (2011) Effects of pH, calcium complexing agents and milk solids concentration on formation of soluble protein aggregates in heated reconstituted skim milk. Int Dairy J 20:777–784

    Article  CAS  Google Scholar 

  5. Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing: food quality assurance and food safety. Trends Food Sci Technol 26:88–98

    Article  CAS  Google Scholar 

  6. Cameron M, McMaster LD, Britz TJ (2009) Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci Technol 89:83–98

    Article  CAS  Google Scholar 

  7. Villamiel M, de Jong P (2000) Influence of high intensity ultrasound and heat treatment in continuous flow on fat, protein and native enzymes of milk. J Agric Food Chem 48:472–478

    Article  CAS  Google Scholar 

  8. D’amico D, Silk TM, Wu J, Guo M (2006) Inactivation of microorganisms in milk and apple cider treated with ultrasound. J Food Prot 69:556–563

    Google Scholar 

  9. Juraga E, Salamon BS, Herceg Z (2011) Application of high intensity ultrasound treatment on enterobacteria count in milk. Mljekarstvo 61:125–134

    Google Scholar 

  10. Earnshaw RG (1998) Ultrasound: a new opportunity for food preservation. In: Povey MJW, Mason TJ (eds) Ultrasound in food processing. Blackie Academic & Professional, London, pp 183–192

    Google Scholar 

  11. Zenker M, Heinz V, Knorr D (2003) Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. J Food Prot 66(9):1642–1649

    CAS  Google Scholar 

  12. Gera N, Doores S (2011) Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. J Food Sci 76:M111–M119

    Article  CAS  Google Scholar 

  13. Bermúdez-Aguirre D, Barbosa-Cánovas GV (2008) Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermosonication. Innov Food Sci Emerg Technol 9:176–185

    Article  CAS  Google Scholar 

  14. Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV (2010) Processing of soft Hispanic cheese using thermosonicated milk: a study of physicochemical characteristics and storage life. J Food Sci 75:5548–5558

    Article  CAS  Google Scholar 

  15. Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV, Mawson R, Versteeg K (2009) Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermosonication treatments. J Food Qual 32:283–302

    Article  CAS  Google Scholar 

  16. Adekunte A, Tiwari BK, Scannell A, Cullen PJ, O’Donnell C (2010) Modelling of yeast inactivation in sonicated tomato juice. Int J Food Microbiol 137:116–120

    Article  CAS  Google Scholar 

  17. Garcia ML, Burgos J, Sanz B, Ordonez JA (1989) Effect of heat and ultrasonic waves on the survival of two strains of Bacillus Subtilis. J Appl Bacteriol 67:619–628

    CAS  Google Scholar 

  18. Ordonoz JA, Aguilera MP, Garcia ML, Sanz B (1987) Effect of combined ultrasonic and heat treatment on the survival of a strain of Staphylococcus Aureus. J Dairy Res 54:61–67

    Article  Google Scholar 

  19. Wringley D, Llorca N (1992) Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatments. J Food Prot 55(9):678–680

    Google Scholar 

  20. Villamiel M, Hamersveld V, De Jong J (1999) Review: effects of ultrasound processing on the quality of dairy products. Milchwissenschaft 54:69–73

    CAS  Google Scholar 

  21. Noci F, Walking-Ribeiro M, Cronin D, Morgan DJ, Lyng JG (2009) Effect of thermosonication, Pulsed electric field and their combination on inactivation of L. innocua in milk. Int Dairy J 19:30–35

    Article  Google Scholar 

  22. Gabriel AA (2014) Inactivation of L. monocytogenes in milk by multifrequency power ultrasound. J Food Process Preserv. doi:10.1111/jfpp.12295

    Google Scholar 

  23. Bermudez-Aguirre D, Mobbs T, Barbosa-Canovas GV (2011) Ultrasound applications in food processing. In: Feng H, Barbosa-Canovas GV, Weis J (eds) Ultrasound technologies for food and bioprocessing. Springer, Science+Business Media, Germany. pp 65–105

    Google Scholar 

  24. Pagan R, Manas P, Alvarez I, Condon S (1999) Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiol 16:139–148

    Article  Google Scholar 

  25. Gao S, Lewis GD, Ashokkumar M, Hemar Y (2014) Inactivation of microorganisms by low frequency and high power ultrasound. A simple model for the inactivation mechanism. Ultrason Sonochem 21(1):446–453

    Article  CAS  Google Scholar 

  26. Deghani MH (2005) Effectiveness of ultrasound on the destruction of E. Coli. Am J Environ Sci 1(3):187–189

    Article  Google Scholar 

  27. Raso J, Palop A, Condon S (1998) Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J Appl Microbiol 85:849–854

    Article  CAS  Google Scholar 

  28. Bermudez-Aguirre D, Barbosa-Canovas GV (2008) Scanning electron microscopy of thermo-sonicated Listeria Innocua cells. In: Gutierrez Lopez GF, Weltichanes J, Parada Arias E (eds) Food engineering integrated approaches. Springer, NY. pp 287–294

    Google Scholar 

  29. Knorr D, Zenker M, Heinz V, Lee D (2004) Application and potential of ultrasonics in food processing. Trends Food Sci Technol 15:261–266

    Article  CAS  Google Scholar 

  30. Bermudez-Aguirre D, Mawson R, Barbosa-Canovas GV (2008) Microstructure of fat globules in whole milk after thermosonication treatment. J Food Sci 73(7):E325–E332

    Article  CAS  Google Scholar 

  31. Herceg Z, Jambrak AR, Celas V, Thagard SM (2012) The effect of high intensity ultrasound treatment on the amount of S. aureus and E. coli in milk. Food Technol Biotechnol 50:46–52

    CAS  Google Scholar 

  32. Vercet A, Lopez P, Burgos J (1997) Inactivation of heat-resistant lipase and protease from Pseudomonas fluorescens by manothermosonication. J Dairy Sci 80:29–36

    Article  CAS  Google Scholar 

  33. Vercet A, Burgos J, Crelier S, Lopez-Buesa P (2001) Inactivation of proteases and lipases by ultrasound. Innov Food Sci Emerg Technol 2:139–150

    Article  CAS  Google Scholar 

  34. Raso J, Pagán R, Condón S, Sala FJ (1998) Influence of temperature on the lethality of ultrasound. Appl Environ Microbiol 64:465–471

    CAS  Google Scholar 

  35. Sala FJ, Burgos J, Condon S, Lopez P, Raso J (1995) Effect of heat and ultrasound on micro-organisms and enzymes. In: Gould GW (ed) New methods of food preservation. Blackie Academic & Professional, London, pp 176–204

    Chapter  Google Scholar 

  36. Ertugay MF, Yuksel Y, Sengul M (2003) The effect of ultrasound on lactoperoxidase and alkaline phosphatase enzymes from milk. Milchwissenschaft 58:593–595

    Google Scholar 

  37. Mawson R, Gamage M, Terefe MS, Knoerzer K (2011) Ultrasound in enzyme activation and inactivation. In: Feng H, Barbosa-Cánovas GV, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, Science+Business Media, Germany. pp 369–404

    Google Scholar 

  38. Tian ZM, Wan MX, Wang SP, Kang JQ (2004) Effects of ultrasound and additives on the function and structure of trypsin. Ultrason Sonochem 11(16):399–404

    CAS  Google Scholar 

  39. Ozbek B, Ulgen KO (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043

    Article  CAS  Google Scholar 

  40. Lopez P, Sala FJ, Fuente JL, Condon S, Raso J, Burgos J (1994) Inactivation of peroxidase, lipoxygenase and polyphenol oxidase by manothermosonication. J Agric Food Chem 42:252–256

    Article  CAS  Google Scholar 

  41. Lopez P, Burgos J (1995) Lipoxygenase inactivation by manothermosonication: effects of sonication parameters, pH, KCl, sugar, glycerol and enzyme concentration. J Agric Food Chem 43:620–625

    Article  CAS  Google Scholar 

  42. Ertugay MF, Sengul M, Sengul M (2004) Effect of ultrasound treatment on milk homogenization and particle size distribution of fat. Turk J Vet Anim Sci 28:303–308

    Google Scholar 

  43. Bosiljkov T, Tripalo B, Brincic M, Jezek D, Karlovic S, Jagust I (2011) Influence of high intensity ultrasound with different probe diameter on the degree of homogenization (variance) and physical properties of cow milk. Afr J Biotechnol 10:34–41

    Google Scholar 

  44. Al-Hilphy ARS, Niamak AK, Al-Temimi AB (2012) Effect of ultrasonic treatment on buffalo milk homogenization and numbers of bacteria. Int J Food Sci Nutr Eng 2:113–118

    Article  Google Scholar 

  45. Jafari SM (2007) Production of submicron emulsions by ultrasound and microfluidisation techniques. J Food Sci 82:478–488

    Google Scholar 

  46. Koh LLA, Chandrapala J, Zisu B, Martin GJ, Kentish S, Ashokkumar M (2014) A comparison of the effectiveness of sonication, high shear mixing and homogenization on improving the heat stability of whey proteins solutions. Food Bioprocess Technol 7:556–566

    Article  CAS  Google Scholar 

  47. Michalski MC, Michel F, Geneste C (2002) Appearance of submicron particles in the milk fat globule size distribution upon mechanical treatments. Lait 82:193–208

    Article  CAS  Google Scholar 

  48. Fox k, Holsinger VH, Caha J, Palansch MJ (1960) Formation of a fat-protein complex in milk by homogenization. J Dairy Sci 43:1396–1406

    Article  CAS  Google Scholar 

  49. Vijaykumar S (2012) Effects of thermosonication on proteases and characteristics of milk and cream. MSc thesis, Iowa State University

    Google Scholar 

  50. Juliano P, Kutter A, Cheng LJ, Swiergon P, Mawson R, Augustin M (2011) Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrason Sonochem 18:963–973

    Article  CAS  Google Scholar 

  51. Juliano P, Temmel S, Rout M, Swiergon P, Mawson R, Knoerzer K (2012) Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies. Ultrason Sonochem 20:52–62

    Article  CAS  Google Scholar 

  52. Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R (2014) Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrason Sonochem 21:1289–1298

    Article  CAS  Google Scholar 

  53. Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R (2014) Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrason Sonochem 21:2092–2098

    Article  CAS  Google Scholar 

  54. Juliano P, Torkamani AE, Leong T, Kolb V, Watkins P, Ailouni S, Singh TK (2014) Lipid oxidation volatiles absent in milk after selected ultrasound processing. Ultrason Sonochem 21:2165–2175

    Article  CAS  Google Scholar 

  55. Torkamani AE, Juliano P, Ailouni S, Singh TK (2014) Impact of ultrasound treatment on lipid oxidation of Cheddar cheese whey. Ultrason Sonochem 21:951–957

    Article  CAS  Google Scholar 

  56. Leong T, Wooster T, Kentish S, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16(6):721–727

    Article  CAS  Google Scholar 

  57. Pandit AB, Joshi JB (1993) Hydrolysis of fatty oils: effect of cavitation. Chem Eng sci 48:3440–3442

    Article  CAS  Google Scholar 

  58. Abismail B, Conselier JP, Wilhelm AM, Delma H, Gourdon C (2000) Emulsification processes: online study by multiple light scattering measurements. Ultrason Sonochem 7:187–192

    Article  CAS  Google Scholar 

  59. Juang R, Lin K (2004) Ultrasound assisted production of w/o emulsions on liquid surfactant membrane processes. Colloids Surf A Physiochem Eng Asp 238:43–49

    Article  CAS  Google Scholar 

  60. Behreud O, Schubert H (2001) Influence of hydrostatic pressure and gas content on continues ultrasound emulsification. Ultrason Sonochem 8:271–276

    Article  Google Scholar 

  61. Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249

    Article  CAS  Google Scholar 

  62. Shanmugam A, Ashokkumar M (2014) Ultrasonic preparation of stable flax seed oil emulsions in dairy systems–physicochemical characterization. Food Hyd 39:151–162

    Article  CAS  Google Scholar 

  63. Lamminen MO, Walker HW, Weavers LK (2004) Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J Memb Sci 237:213–223

    Article  CAS  Google Scholar 

  64. Muthukumaran S, Kentish S, Stevens GW, Ashokkumar M, Mawson R (2007) The application of ultrasound to dairy ultrafiltration: the influence of operation conditions. J Food Eng 81:364–373

    Article  Google Scholar 

  65. Muthukumaran S, Kentish S, Lalchandani S, Ashokkumar M, Mawson R, Stevens GW, Grieser F (2005) The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrason Sonochem 12:29–35

    Article  CAS  Google Scholar 

  66. Muthukumaran S, Kentish S, Ashokkumar M, Stevens GW (2005) Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. J Memb Sci 258:106–114

    Article  CAS  Google Scholar 

  67. Hotrum NE, de Jong P, Akkerman JC (2015) Pilot scale ultrasound enabled plate heat exchanger-its design and potential to prevent biofouling. J Food Eng 153:81–88

    Article  Google Scholar 

  68. Koh LL, Nguyen HH, Chandrapala J, Zisu B, Ashokkumar M, Kentish S (2014) The use of ultrasonic feed pre-treatment to reduce membrane fouling in whey ultrafiltration. J Memb Sci 453:230–239

    Article  CAS  Google Scholar 

  69. Shahraki MH, Maskooki A, Faezian A (2014) Effect of various sonication modes on permeation flux in cross flow ultrafiltration membranes. J Environ Chem Eng 2:2289–2294

    Article  CAS  Google Scholar 

  70. Abel M, Kiss ZL, Beszedes S, Hodor C, Keszthelyi-szabo G, Laszlo Z (2015) Ultrasonically assisted ultrafiltration of whey solution. J Food Proc Eng. doi:10.1111/jfpe.12177

    Google Scholar 

  71. Uluko H, Zhang S, Liu L, Li H, Cui W, Xue H, Zhao L, Sun Y, Lu J, Lu J (2014) Pilot scale membrane fractionation of ACE inhibitory and antioxidative peptides from ultrasound pretreated milk protein concentrate hydroxylates. J Func Foods 7:350–361

    Article  CAS  Google Scholar 

  72. Mirzaie A, Mohammadi T (2012) Effect of ultrasonic waves on flux enhancement in microfiltration of milk. J Food Eng 108(1):77–86

    Article  Google Scholar 

  73. Bund RK, Pandit AB (2007) Sonocrystallisation: effect on lactose recovery and crystal habit. Ultrason Sonochem 14:143–152

    Article  CAS  Google Scholar 

  74. Deora NS, Misra NN, Deswal A, Mishra HN, Cillen PJ, Tiwari BK (2013) Ultrasound improved crystallization in food processing. Food Eng Rev 5:36–44

    Article  Google Scholar 

  75. Bund RK, Pandit AB (2007) Rapid lactose recovery from paneer whey using sonocrystallization: a process optimization. Chem Eng Process 46:846–850

    Article  CAS  Google Scholar 

  76. Guo Z, Zhang M, Li H, Wnag J, Kougoulos E (2005) Effect of ultrasound on anti-solvent crystallization process. J Crys Growth 273:555–563

    Article  CAS  Google Scholar 

  77. Hem SL (1967) The effect of ultrasonic vibrations on crystallization processes. Ultrasonics 5(4):202–207

    Article  CAS  Google Scholar 

  78. Kickling R (1965) Nucleation of freezing by cavity collapse and its relation to cavitation damage. Nature 206:915–917

    Article  Google Scholar 

  79. Patel SR, Murthy VP (2009) Ultrasound assisted crystallization for the recovery of lactose in an anti solvent acetone. Crst Res Tech 44:889–896

    Article  CAS  Google Scholar 

  80. Patel SR, Murthy VP (2011) Waste valorisation: recovery of lactose from partially deprotonated whey by using acetone as antisolvent. Dairy Sci Tech 91:53–63

    CAS  Google Scholar 

  81. Zisu B, Sciberras M, Jayasena V, Weeks M, Palmer M, Dincer T (2014) Sonocrystallisation of lactose in concentrated whey. Ultrason Sonochem 21(6):2117–2121

    Article  CAS  Google Scholar 

  82. Martini S, Suzuki AH, Hartel RW (2008) Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. J Am Oil Chem Soc 85:621–628

    Article  CAS  Google Scholar 

  83. Sizuki AH, Lee J, Padilla SG, Martini S (2010) Altering functional properties of fats using power ultrasound. J Food Sci 75:208–214

    Article  CAS  Google Scholar 

  84. Reiner J, Noci F, Cronin DA, Morgan DJ, Lyng G (2009) The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chem 114:905–911

    Article  CAS  Google Scholar 

  85. Patrick M, Blindt R, Janssen J (2004) The effect of ultrasonic intensity on the crystal structure of palm oil. Ultrason Sonochem 11:251–255

    Article  CAS  Google Scholar 

  86. Acton E, Morris GJ (1992) Methods and apparatus for the control of solidification in liquids. US Patent WO99/20420

    Google Scholar 

  87. Chow R, Blindt R, Chivers R, Povey M (2003) The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics 41(8):595–604

    Article  CAS  Google Scholar 

  88. Mortazavi A, Tabatabai F (2008) Study of ice cream freezing process after treatment with ultrasound. World Appl Sci J 4(2):188–190

    Google Scholar 

  89. Havea P (2006) Protein interactions in milk protein concentrate powders. Int Dairy J 16:415–422

    Article  CAS  Google Scholar 

  90. Udabage P, Puvanenthiran A, Yoo J, Versteeg C, Augustin MA (2012) Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment. J Dairy Res 79:76–83

    Article  CAS  Google Scholar 

  91. Augustin MA, Sanguansri L, Williams R, Andrews H (2012) High shear treatment of concentrates and drying conditions influence the solubility of milk protein concentrate powders. J Dairy Res 79:459–468

    Article  CAS  Google Scholar 

  92. Yanjun S, Jianhang C, Shuwen Z, Hongjuan L, Jing L, Lu L, Uluko H et al (2014) Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. J Food Eng 124:11–18

    Article  CAS  Google Scholar 

  93. Carr A (2002) Monovalent salt enhances solubility of milk protein concentrate. In: New Zealand Dairy Board, Bhaskar NZ, Ganugapati Vijaya; Ram, Satyendra). Application: WO, 2002, pp 33

    Google Scholar 

  94. Schuck P, Davenel A, Mariette F, Briard V, Mejean S, Piot M (2002) Rehydration of casein powders: effects of added mineral salts and salt addition methods on water transfer. Int Dairy J 12:51–57

    Article  CAS  Google Scholar 

  95. McCarthy NA, Kelly PM, Maher PG, Fenelon MA (2014) Dissolution of milk protein concentrates by ultrasonication. J Food Eng 126:142–148

    Article  CAS  Google Scholar 

  96. Chandrapala J, Martin GJ, Kentish S, Ashokkuamr M (2014) Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. Ultrason Sonochem 21:1658–1665

    Article  CAS  Google Scholar 

  97. Ashokkumar M, Lee J, Kentish SE, Grieser F (2004) Bubbles in an acoustic field: an overview. Ultrason Sonochem 14:470–475

    Article  CAS  Google Scholar 

  98. Ashokkumar M, Kentish S, Lee J, Zisu B, Palmer M, Augustin M (2009a) Processing of dairy ingredients by ultrasonication. PCT Int Appl WO2009/079691A1

    Google Scholar 

  99. Ashokkumar M, Lee J, Zisu B, Bhaskarcharya R, Kentish S (2009) Sonication increases the heat stability of whey proteins. J Dairy Sci 92:5353–5356

    Article  CAS  Google Scholar 

  100. Zisu B, Bhaskarcharya R, Ashokkumar M, Kentish S (2010) Ultrasonics processing of dairy systems in large scale reactors. Ultrason Sonochem 17:1075–1087

    Article  CAS  Google Scholar 

  101. Devi S, Ashokkumar M, Grieser F (2005) The influence of acoustic power on multibubble sonoluminescence in aqueous solution containing organic solutes. J Phys Chem B 109:20044–20050

    Article  CAS  Google Scholar 

  102. Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M (2012) A possible mechanism to understand the ultrasound induced heat stability of whey protein concentrates. International nonthermal workshop, Melbourne

    Google Scholar 

  103. Kresic G, Lelas V, Jambrak AR, Herceg Z, Brncic SR (2008) Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins. J Food Eng 87:64–73

    Article  CAS  Google Scholar 

  104. Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JA, Lepock JR, Meiering EM (2004) Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci 13:3017–3027

    Article  CAS  Google Scholar 

  105. Chandrapala J, Zisu B, Palmer M, Kentish SE, Ashokkumar M (2011) Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason Sonochem 18:951–957

    Article  CAS  Google Scholar 

  106. Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2012) The effects of high‐intensity ultrasound on the structural and functional properties of α‐Lactalbumin, β‐Lactoglobulin and their mixtures. Food Res Int 48:940–943

    Article  CAS  Google Scholar 

  107. Martin GJ, Williams R, Dunstan D (2007) Comparison of casein micelles in raw and reconstituted skim milk. J Dairy Sci 90:4543–4551

    Article  CAS  Google Scholar 

  108. Madadlou A, Mousavi ME, Emam-Djomek Z, Ehsani M, Sheehan D (2009) Sonodisruption of reassembled casein micelles at different pH values. Ultrason Sonochem 16:644–648

    Article  CAS  Google Scholar 

  109. Mounsey JJ, O’Kennedy BT, Kelly PM (2005) Influence of transglutaminase treatment on properties of milk and products made therefrom. Lait 85:405–418

    Article  CAS  Google Scholar 

  110. Nguyen NH, Anema SG (2010) Effect of ultrasonication on the properties of skim milk used in the formation of acid gels. Innov Food Sci Emerg Technol 11:616–622

    Article  CAS  Google Scholar 

  111. Chandrapala J, Martin GJ, Zisu B, Kentish S, Ashokkuamr M (2012) The effect of ultrasound on casein micelle integrity. J Dairy Sci 95:6882–6890

    Article  CAS  Google Scholar 

  112. Shanmugam A, Chandrapala J, Ashokkumar M (2012) The effect of ultrasound on the physical and functional properties of skim milk. Innov Food Sci Emerg Technol 16:251–258

    Article  CAS  Google Scholar 

  113. Liu Z, Juliano P, Williams R, Niere J, Augustin M (2014) Ultrasound effects on assembly of casein micelles in reconstituted skim milk. J Dairy Res 81(2):146–155

    Article  CAS  Google Scholar 

  114. Anema SG, Klostermeyer H (1997) Heat induced, pH dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100°C. J Agric Food Chem 45:1108–1115

    Article  CAS  Google Scholar 

  115. Snoeren THM, Brinkhuis JA, Damman AJ, Klok HJ (1982) The viscosity of skim-milk concentrates. Nether Milk Dairy J 36:305–316

    CAS  Google Scholar 

  116. Zisu B, Schleyer M, Chandrapala J (2012) Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk. Int Dairy J 1–3

    Google Scholar 

  117. Vercet A, Oria P, Quina P, Crelier S, Lopez P (2002) Rheological properties of yoghurt made with milk submitted and manothermosonication. J Agric Food Chem 50(21):6165–6171

    Google Scholar 

  118. Riener J, Noci F, Cronin DA, Morgan DJ, Lyng G (2010) A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chem 119:1108–1110

    Article  CAS  Google Scholar 

  119. Wu H, Hulbert GJ, Mount JR (2001) Effects of ultrasound on milk homogenization and fermentation with yoghurt starter. Innov Food Sci Emerg Technol 1:211–218

    Article  Google Scholar 

  120. Liu Z, Juliano P, Williams R, Niere J, Augustin M (2014) Ultrasound improves the renneting properties of milk. Ultrason Sonochem 21(6):2131–2137

    Article  CAS  Google Scholar 

  121. Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2013) Influence of ultrasound on the chemically induced gelation of micellar casein systems. J Dairy Res 80(2):138–143

    Google Scholar 

  122. Zisu B, Lee J, Chandrapala J, Bhaskarcharya R, Palmer M, Kentish S, Ashokkumar M (2011) Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. J Dairy Res 78:226–232

    Article  CAS  Google Scholar 

  123. Jambrak AR, Mason T, Lelas V, Herceg Z, Hereg L (2008) Effect of ultrasound treatment on solubility and foaming properties of whey protein dispersion. J Food Eng 86:281–287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayani Chandrapala .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Chandrapala, J. (2016). Ultrasound Processing of Milk and Dairy Products. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_66

Download citation

Publish with us

Policies and ethics