Skip to main content

Physiological and Pathophysiological Control of Glucagon Secretion by Pancreatic α-Cells

  • Reference work entry
  • First Online:

Abstract

Glucagon is a major hyperglycemic hormone secreted by pancreatic α-cells. It plays a key role in glucose homeostasis by counteracting the action of the hypoglycemic hormone insulin and strongly contributing to the correction of hypoglycemia. Its main effect is to stimulate glucose output from the liver. The mechanisms by which glucose controls glucagon secretion are still largely unknown and hotly debated. Glucagon secretion is impaired in diabetes since there is a relative hyperglucagonemia in all forms of diabetes which strongly aggravates hyperglycemia and there is a reduced or absent glucagon response to hypoglycemia particularly in type 1 diabetes. The reasons of these defects are poorly known. This article presents a short overview of the role of glucagon and the proposed mechanisms of control of glucagon secretion in normal conditions and diabetes and briefly comments the anti-glucagon therapies in diabetes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilar-Parada E, Eisentraut AM, Unger RH (1969) Pancreatic glucagon secretion in normal and diabetic subjects. Am J Med Sci 257:415–419

    PubMed  CAS  Google Scholar 

  • Ahren B (2000) Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43:393–410

    PubMed  CAS  Google Scholar 

  • Ahren B, Sorhede WM (2008) Disturbed α-cell function in mice with β-cell specific overexpression of human islet amyloid polypeptide. Exp Diabetes Res 2008:304513

    PubMed  PubMed Central  Google Scholar 

  • Ahren B, Veith RC, Taborsky GJ Jr (1987) Sympathetic nerve stimulation versus pancreatic norepinephrine infusion in the dog: 1). Effects on basal release of insulin and glucagon. Endocrinology 121:323–331

    PubMed  CAS  Google Scholar 

  • Akesson B, Panagiotidis G, Westermark P, Lundquist I (2003) Islet amyloid polypeptide inhibits glucagon release and exerts a dual action on insulin release from isolated islets. Regul Pept 111:55–60

    PubMed  CAS  Google Scholar 

  • Al-Hasani K, Pfeifer A, Courtney M, Ben-Othman N, Gjernes E, Vieira A, Druelle N, Avolio F, Ravassard P, Leuckx G, Lacas-Gervais S, Ambrosetti D, Benizri E, Hecksher-Sorensen J, Gounon P, Ferrer J, Gradwohl G, Heimberg H, Mansouri A, Collombat P (2013) Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev Cell 26:86–100

    PubMed  CAS  Google Scholar 

  • Ali S, Drucker DJ (2009) Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 296:E415–E421

    PubMed  CAS  Google Scholar 

  • Ali S, Lamont BJ, Charron MJ, Drucker DJ (2011) Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J Clin Invest 121:1917–1929

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allister EM, Robson-Doucette CA, Prentice KJ, Hardy AB, Sultan S, Gaisano HY, Kong D, Gilon P, Herrera PL, Lowell BB, Wheeler MB (2013) UCP2 regulates the glucagon response to fasting and starvation. Diabetes 62:1623–1633

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alquier T, Kawashima J, Tsuji Y, Kahn BB (2007) Role of hypothalamic adenosine 5′-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia. Endocrinology 148:1367–1375

    PubMed  CAS  Google Scholar 

  • Alumets I, Hakanson R, Sundler F (1983) Ontogeny of endocrine cells in porcine gut and pancreas. An immunocytochemical study. Gastroenterology 85:1359

    PubMed  CAS  Google Scholar 

  • Alvina K, Ellis-Davies G, Khodakhah K (2009) T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience 158:635–641

    PubMed  CAS  PubMed Central  Google Scholar 

  • Andrews SS, Alfredo Lopez S, Blackard WG (1975) Effect of lipids on glucagon secretion in man. Metabolism 24:35–44

    PubMed  CAS  Google Scholar 

  • Arafat AM, Kaczmarek P, Skrzypski M, Pruszynska-Oszmalek E, Kolodziejski P, Szczepankiewicz D, Sassek M, Wojciechowicz T, Wiedenmann B, Pfeiffer AF, Nowak KW, Strowski MZ (2013) Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis? Diabetologia 56:588–597

    PubMed  CAS  Google Scholar 

  • Arnes L, Hill JT, Gross S, Magnuson MA, Sussel L (2012) Ghrelin expression in the mouse pancreas defines a unique multi-potent progenitor population. PLoS One 7:e52026

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aromataris EC, Roberts ML, Barritt GJ, Rychkov GY (2006) Glucagon activates Ca2+ and Cl channels in rat hepatocytes. J Physiol 573:611–625

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ashcroft FM, Rorsman P (2004) Molecular defects in insulin secretion in type-2 diabetes. Rev Endocr Metab Disord 5:135–142

    PubMed  CAS  Google Scholar 

  • Asplin CM, Paquette TL, Palmer JP (1981) In vivo inhibition of glucagon secretion by paracrine β-cell activity in man. J Clin Invest 68:314

    PubMed  CAS  PubMed Central  Google Scholar 

  • Authier F, Desbuquois B (2008) Glucagon receptors. Cell Mol Life Sci 65:1880–1899

    PubMed  CAS  Google Scholar 

  • Bailey SJ, Ravier MA, Rutter GA (2007) Glucose-dependent regulation of γ-aminobutyric acid (GABAA) receptor expression in mouse pancreatic islet α-cells. Diabetes 56:320–327

    PubMed  CAS  Google Scholar 

  • Bajorunas DR, Fortner JG, Jaspan JB (1986) Glucagon immunoreactivity and chromatographic profiles in pancreatectomized humans. Paradoxical response to oral glucose. Diabetes 35:886–893

    PubMed  CAS  Google Scholar 

  • Baldissera FG, Holst JJ (1984) Glucagon-related peptides in the human gastrointestinal mucosa. Diabetologia 26:223–228

    PubMed  CAS  Google Scholar 

  • Balkan B, Li X (2000) Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am J Physiol Regul Integr Comp Physiol 279:R1449–R1454

    PubMed  CAS  Google Scholar 

  • Bansal P, Wang Q (2008) Insulin as a physiological modulator of glucagon secretion. Am J Physiol Endocrinol Metab 295:E751–E761

    PubMed  CAS  Google Scholar 

  • Barden N, Lavoie M, Dupont A, Côté J, Côté JP (1977) Stimulation of glucagon release by addition of anti-somatostatin serum to islets of Langerhans in vitro. Endocrinology 101:635–638

    PubMed  CAS  Google Scholar 

  • Barg S, Galvanovskis J, Göpel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting α-cells. Diabetes 49:1500–1510

    PubMed  CAS  Google Scholar 

  • Barnes AJ, Bloom SR (1976) Pancreatectomised man: a model for diabetes without glucagon. Lancet 1:219–221

    PubMed  CAS  Google Scholar 

  • Baron AD, Schaeffer L, Shragg P, Kolterman OG (1987) Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 36:274–283

    PubMed  CAS  Google Scholar 

  • Barthel A, Schmoll D (2003) Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 285:E685–E692

    PubMed  CAS  Google Scholar 

  • Bataille D (2007) Pro-protein convertases in intermediary metabolism: islet hormones, brain/gut hormones and integrated physiology. J Mol Med (Berl) 85:673–684

    CAS  Google Scholar 

  • Baum D, Porte D Jr, Ensinck J (1979) Hyperglucagonemia and α-adrenergic receptor in acute hypoxia. Am J Physiol 237:E404–E408

    PubMed  CAS  Google Scholar 

  • Berts A, Ball A, Gylfe E, Hellman B (1996) Suppression of Ca2+ oscillations in glucagon-producing α2-cells by insulin glucose and amino acids. Biochim Biophys Acta Mol Cell Res 1310:212–216

    Google Scholar 

  • Berts A, Gylfe E, Hellman B (1997) Cytoplasmic Ca2+ in glucagon-producing pancreatic α-cells exposed to carbachol and agents affecting Na+ fluxes. Endocrine 6:79–83

    PubMed  CAS  Google Scholar 

  • Best L, Brown PD, Sener A, Malaisse WJ (2010) Electrical activity in pancreatic islet cells: the VRAC hypothesis. Islets 2:59–64

    PubMed  Google Scholar 

  • Bode HP, Weber S, Fehmann HC, Göke B (1999) A nutrient-regulated cytosolic calcium oscillator in endocrine pancreatic glucagon-secreting cells. Pflugers Arch 437:324–334

    PubMed  CAS  Google Scholar 

  • Bokvist K, Rorsman P, Smith PA (1990) Block of ATP-regulated and Ca2+-activated K+ channels in mouse pancreatic β-cells by external tetraethylammonium and quinine. J Physiol (Lond) 423:327–342

    CAS  Google Scholar 

  • Bokvist K, Olsen HL, Hoy M, Gotfredsen CF, Holmes WF, Buschard K, Rorsman P, Gromada J (1999) Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic α-cells. Pflugers Arch 438:428–436

    PubMed  CAS  Google Scholar 

  • Bollheimer LC, Landauer HC, Troll S, Schweimer J, Wrede CE, Schölmerich J, Buettner R (2004) Stimulatory short-term effects of free fatty acids on glucagon secretion at low to normal glucose concentrations. Metabolism 53:1443–1448

    PubMed  CAS  Google Scholar 

  • Bolli GB, Fanelli CG (1999) Physiology of glucose counterregulation to hypoglycemia. Endocrinol Metabol Clin North Am 28:467–493

    CAS  Google Scholar 

  • Bonner-Weir S, Orci L (1982) New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 31:883–889

    PubMed  CAS  Google Scholar 

  • Boom A, Lybaert P, Pollet JF, Jacobs P, Jijakli H, Golstein PE, Sener A, Malaisse WJ, Beauwens R (2007) Expression and localization of cystic fibrosis transmembrane conductance regulator in the rat endocrine pancreas. Endocrine 32:197–205

    PubMed  CAS  Google Scholar 

  • Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI (1995) Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44:180–184

    PubMed  CAS  Google Scholar 

  • Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI (1997) Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest 99:361–365

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller YD, Giovannoni L, Parnaud G, Berney T (2010) Unique arrangement of α- and β-cells in human islets of Langerhans. Diabetes 59:1202–1210

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braaten JT, Faloona GR, Unger RH (1974) The effect of insulin on the α-cell to hyperglycemia in long-standing alloxan diabetes. J Clin Invest 53:1017–1021

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brand CL, Rolin B, Jorgensen PN, Svendsen I, Kristensen JS, Holst JJ (1994) Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia 37:985–993

    PubMed  CAS  Google Scholar 

  • Braun M, Rorsman P (2010) The glucagon-producing α-cell: an electrophysiologically exceptional cell. Diabetologia 53:1827–1830

    PubMed  CAS  Google Scholar 

  • Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder H, Rorsman P (2004a) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic β-cells. J Gen Physiol 123:191–204

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braun M, Wendt A, Buschard K, Salehi A, Sewing S, Gromada J, Rorsman P (2004b) GABAB receptor activation inhibits exocytosis in rat pancreatic β-cells by G-protein-dependent activation of calcineurin. J Physiol (Lond) 559:397–409

    CAS  Google Scholar 

  • Braun M, Wendt A, Karanauskaite J, Galvanovskis J, Clark A, Macdonald PE, Rorsman P (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic β-cells. J Gen Physiol 129:221–231

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braun M, Ramracheya R, Amisten S, Bengtsson M, Moritoh Y, Zhang Q, Johnson PR, Rorsman P (2009) Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic δ-cells. Diabetologia 52:1566–1578

    PubMed  CAS  Google Scholar 

  • Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, Rorsman P (2010) γ-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β-cells. Diabetes 59:1694–1701

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bringer J, Mirouze J, Marchal G, Pham TC, Luyckx A, Lefebvre P, Orsetti A (1981) Glucagon immunoreactivity and antidiabetic action of somatostatin in the totally duodeno-pancreatectomized and gastrectomized human. Diabetes 30:851–856

    PubMed  CAS  Google Scholar 

  • Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097

    PubMed  CAS  Google Scholar 

  • Brunicardi FC, Stagner J, Bonner-Weir S, Wayland H, Kleinman R, Livingston E, Guth P, Menger M, McCuskey R, Intaglietta M, Charles A, Ashley S, Cheung A, Ipp E, Gilman S, Howard T, Passaro E Jr (1996) Microcirculation of the islets of Langerhans – Long Beach Veterans Administration Regional Medical Education Center Symposium. Diabetes 45:385–392

    PubMed  CAS  Google Scholar 

  • Brunicardi FC, Kleinman R, Moldovan S, Nguyen THL, Watt PC, Walsh J, Gingerich R (2001) Immunoneutralization of somatostatin, insulin, and glucagon causes alterations in islet cell secretion in the isolated perfused human pancreas. Pancreas 23:302–308

    PubMed  CAS  Google Scholar 

  • Burcelin R, Thorens B (2001) Evidence that extrapancreatic GLUT2-Dependent glucose sensors control glucagon secretion. Diabetes 50:1282–1289

    PubMed  CAS  Google Scholar 

  • Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334–2339

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Kohler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, Kenyon NS, Ricordi C, Caicedo A, Berggren PO (2008) Glutamate is a positive autocrine signal for glucagon release. Cell Metab 7:545–554

    PubMed  CAS  Google Scholar 

  • Cao W, Collins QF, Becker TC, Robidoux J, Lupo EG Jr, Xiong Y, Daniel KW, Floering L, Collins S (2005) p38 mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J Biol Chem 280:42731–42737

    PubMed  CAS  Google Scholar 

  • Carosati E, Cruciani G, Chiarini A, Budriesi R, Ioan P, Spisani R, Spinelli D, Cosimelli B, Fusi F, Frosini M, Matucci R, Gasparrini F, Ciogli A, Stephens PJ, Devlin FJ (2006) Calcium channel antagonists discovered by a multidisciplinary approach. J Med Chem 49:5206–5216

    PubMed  CAS  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947

    PubMed  PubMed Central  Google Scholar 

  • Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590:2577–2589

    PubMed  CAS  PubMed Central  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    PubMed  CAS  Google Scholar 

  • Cejvan K, Coy DH, Efendic S (2003) Intra-islet somatostatin regulates glucagon release via type 2 somatostatin receptors in rats. Diabetes 52:1176–1181

    PubMed  CAS  Google Scholar 

  • Chen M, Gavrilova O, Zhao WQ, Nguyen A, Lorenzo J, Shen L, Nackers L, Pack S, Jou W, Weinstein LS (2005) Increased glucose tolerance and reduced adiposity in the absence of fasting hypoglycemia in mice with liver-specific G deficiency. J Clin Invest 115:3217–3227

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen L, Philippe J, Unger RH (2011) Glucagon responses of isolated α-cells to glucose, insulin, somatostatin, and leptin. Endocr Pract 17:819–825

    PubMed  Google Scholar 

  • Cheng KT, Ong HL, Liu X, Ambudkar IS (2011) Contribution of TRPC1 and Orai1 to Ca2+ entry activated by store depletion. Adv Exp Med Biol 704:435–449

    PubMed  CAS  Google Scholar 

  • Cheng-Xue R, Gomez-Ruiz A, Antoine N, Noel LA, Chae HY, Ravier MA, Chimienti F, Schuit FC, Gilon P (2013) Tolbutamide controls glucagon release from mouse islets differently than glucose: involvement of KATP channels from both α-cells and δ-cells. Diabetes 62:1612–1622

    PubMed  PubMed Central  Google Scholar 

  • Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A, Seve M (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206

    PubMed  CAS  Google Scholar 

  • Cho YM, Merchant CE, Kieffer TJ (2012) Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 135:247–278

    PubMed  CAS  Google Scholar 

  • Christensen M, Bagger JI, Vilsboll T, Knop FK (2011) The α-cell as target for type 2 diabetes therapy. Rev Diabet Stud 8:369–381

    PubMed  PubMed Central  Google Scholar 

  • Claus TH, Pan CQ, Buxton JM, Yang L, Reynolds JC, Barucci N, Burns M, Ortiz AA, Roczniak S, Livingston JN, Clairmont KB, Whelan JP (2007) Dual-acting peptide with prolonged glucagon-like peptide-1 receptor agonist and glucagon receptor antagonist activity for the treatment of type 2 diabetes. J Endocrinol 192:371–380

    PubMed  CAS  Google Scholar 

  • Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, Frost GS, Ghatei MA, Bloom SR (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88:4696–4701

    PubMed  CAS  Google Scholar 

  • Collins SC, Salehi A, Eliasson L, Olofsson CS, Rorsman P (2008) Long-term exposure of mouse pancreatic islets to oleate or palmitate results in reduced glucose-induced somatostatin and oversecretion of glucagon. Diabetologia 51:1689–1693

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conarello SL, Jiang G, Mu J, Li Z, Woods J, Zycband E, Ronan J, Liu F, Roy RS, Zhu L, Charron MJ, Zhang BB (2007) Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated β-cell loss and hyperglycaemia. Diabetologia 50:142–150

    PubMed  CAS  Google Scholar 

  • Conlon JM (1988) Proglucagon-derived peptides: nomenclature, biosynthetic relationships and physiological roles. Diabetologia 31:563–566

    PubMed  CAS  Google Scholar 

  • Consoli A, Nurjhan N, Capani F, Gerich J (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38:550–557

    PubMed  CAS  Google Scholar 

  • Cryer PE (1981) Glucose counterregulation in man. Diabetes 30:261–264

    PubMed  CAS  Google Scholar 

  • Cryer PE (1993) Glucose counterregulation: prevention and correction of hypoglycemia in humans. Am J Physiol Endocrinol Metab 264:E149–E155

    CAS  Google Scholar 

  • Cryer PE (1996) Role of growth hormone in glucose counterregulation. Horm Res 46:192–194

    PubMed  CAS  Google Scholar 

  • Cryer PE (2002) Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes. Diabetologia 45:937–948

    PubMed  CAS  Google Scholar 

  • Cryer PE (2012) Minireview: glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 153:1039–1048

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cryer PE (2013) Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med 369:362–372

    PubMed  CAS  Google Scholar 

  • Cynober LA (2002) Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition 18:761–766

    PubMed  CAS  Google Scholar 

  • D’Alessio DA, Ensinck JW (1990) Fasting and postprandial concentrations of somatostatin-28 and somatostatin-14 in type II diabetes in men. Diabetes 39:1198–1202

    PubMed  Google Scholar 

  • Dallaporta M, Perrin J, Orsini JC (2000) Involvement of adenosine triphosphate-sensitive K+ channels in glucose-sensing in the rat solitary tract nucleus. Neurosci Lett 278:77–80

    PubMed  CAS  Google Scholar 

  • Dalle S, Fontés G, Lajoix AD, Lebrigand L, Gross R, Ribes G, Dufour M, Barry L, LeNguyen D, Bataille D (2002) Miniglucagon (glucagon 19–29). A novel regulator of the pancreatic islet physiology. Diabetes 51:406–412

    PubMed  CAS  Google Scholar 

  • Davies SL, Brown PD, Best L (2007) Glucose-induced swelling in rat pancreatic α-cells. Mol Cell Endocrinol 264:61–67

    PubMed  CAS  Google Scholar 

  • Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ, Chaudhary N, Holland J, Hembree J, Abplanalp W, Grant E, Ruehl J, Wilson H, Kirchner H, Lockie SH, Hofmann S, Woods SC, Nogueiras R, Pfluger PT, Perez-Tilve D, DiMarchi R, Tschop MH (2009) A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5:749–757

    PubMed  CAS  Google Scholar 

  • Day JW, Gelfanov V, Smiley D, Carrington PE, Eiermann G, Chicchi G, Erion MD, Gidda J, Thornberry NA, Tschop MH, Marsh DJ, SinhaRoy R, DiMarchi R, Pocai A (2012) Optimization of co-agonism at GLP-1 and glucagon receptors to safely maximize weight reduction in DIO-rodents. Biopolymers 98:443–450

    PubMed  CAS  Google Scholar 

  • de Heer J, Rasmussen C, Coy DH, Holst JJ (2008) Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51:2263–2270

    PubMed  CAS  Google Scholar 

  • De Marinis YZ, Salehi A, Ward CE, Zhang Q, Abdulkader F, Bengtsson M, Braha O, Braun M, Ramracheya R, Amisten S, Habib AM, Moritoh Y, Zhang E, Reimann F, Rosengren AH, Shibasaki T, Gribble F, Renstrom E, Seino S, Eliasson L, Rorsman P (2010) GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab 11:543–553

    PubMed  Google Scholar 

  • de Vries MG, Arseneau LM, Lawson ME, Beverly JL (2003) Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia. Diabetes 52:2767–2773

    PubMed  Google Scholar 

  • Deng S, Vatamaniuk M, Huang X, Doliba N, Lian MM, Frank A, Velidedeoglu E, Desai NM, Koeberlein B, Wolf B, Barker CF, Naji A, Matschinsky FM, Markmann JF (2004) Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53:624–632

    PubMed  CAS  Google Scholar 

  • Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin JC (1998) The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in β-cells but not in α-cells and are also observed in human islets. J Biol Chem 273:33905–33908

    PubMed  CAS  Google Scholar 

  • Dey A, Lipkind GM, Rouille Y, Norrbom C, Stein J, Zhang C, Carroll R, Steiner DF (2005) Significance of prohormone convertase 2, PC2, mediated initial cleavage at the proglucagon interdomain site, Lys70-Arg71, to generate glucagon. Endocrinology 146:713–727

    PubMed  CAS  Google Scholar 

  • Diakogiannaki E, Gribble FM, Reimann F (2012) Nutrient detection by incretin hormone secreting cells. Physiol Behav 106:387–393

    PubMed  CAS  PubMed Central  Google Scholar 

  • Diao J, Asghar Z, Chan CB, Wheeler MB (2005) Glucose-regulated glucagon secretion requires insulin receptor expression in pancreatic α-cells. J Biol Chem 280:33487–33496

    PubMed  CAS  Google Scholar 

  • Dinneen S, Alzaid A, Turk D, Rizza R (1995) Failure of glucagon suppression contributes to postprandial hyperglycaemia in IDDM. Diabetologia 38:337–343

    PubMed  CAS  Google Scholar 

  • Dobbins RL, Davis SN, Neal DW, Cobelli C, Cherrington AD (1994) Pulsatility does not alter the response to a physiological increment in glucagon in the conscious dog. Am J Physiol Endocrinol Metab 266:E467–E478

    CAS  Google Scholar 

  • Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194

    PubMed  CAS  Google Scholar 

  • Drucker DJ, Asa SL (1988) Glucagon gene expression in vertebrate brain. J Biol Chem 263:13475–13478

    PubMed  CAS  Google Scholar 

  • Du X, Kosinski JR, Lao J, Shen X, Petrov A, Chicchi GG, Eiermann GJ, Pocai A (2012) Differential effects of oxyntomodulin and GLP-1 on glucose metabolism. Am J Physiol Endocrinol Metab 303:E265–E271

    PubMed  CAS  Google Scholar 

  • Dumonteil E, Ritz-Laser B, Magnan C, Grigorescu I, Ktorza A, Philippe J (1999) Chronic exposure to high glucose concentrations increases proglucagon messenger ribonucleic acid levels and glucagon release from InR1G9 cells. Endocrinology 140:4644–4650

    PubMed  CAS  Google Scholar 

  • Dumonteil E, Magnan C, Ritz-Laser B, Ktorza A, Meda P, Philippe J (2000) Glucose regulates proinsulin and prosomatostatin but not proglucagon messenger ribonucleic acid levels in rat pancreatic islets. Endocrinology 141:174–180

    PubMed  CAS  Google Scholar 

  • Dunning BE, Gerich JE (2007) The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 28:253–283

    PubMed  CAS  Google Scholar 

  • Dunning BE, Foley JE, Ahren B (2005) α-cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 48:1700–1713

    PubMed  CAS  Google Scholar 

  • Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in M3 muscarinic acetylcholine receptor – deficient mice. Diabetes 53:1714–1720

    PubMed  CAS  Google Scholar 

  • Edwards JC, Howell SL, Taylor KW (1969) Fatty acids as regulators of glucagon secretion. Nature 224:808–809

    PubMed  CAS  Google Scholar 

  • Edwards JC, Howell SL, Taylor KW (1970) Radioimmunoassay of glucagon released from isolated guinea-pig islets of Langerhans incubated in vitro. Biochim Biophys Acta 215:297–309

    PubMed  CAS  Google Scholar 

  • Egefjord L, Petersen AB, Rungby J (2010) Zinc, α-cells and glucagon secretion. Curr Diabetes Rev 6:52–57

    PubMed  CAS  Google Scholar 

  • Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AM, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and α-cells. Nat Med 17:1481–1489

    PubMed  CAS  Google Scholar 

  • Ensinck JW, Laschansky EC, Vogel RE, Simonowitz DA, Roos BA, Francis BH (1989) Circulating prosomatostatin-derived peptides. Differential responses to food ingestion. J Clin Invest 83:1580–1589

    PubMed  CAS  PubMed Central  Google Scholar 

  • Erion DM, Kotas ME, McGlashon J, Yonemitsu S, Hsiao JJ, Nagai Y, Iwasaki T, Murray SF, Bhanot S, Cline GW, Samuel VT, Shulman GI, Gillum MP (2013) cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) promotes glucagon clearance and hepatic amino acid catabolism to regulate glucose homeostasis. J Biol Chem 288:16167–16176

    PubMed  CAS  PubMed Central  Google Scholar 

  • Esni F, Täljedal IB, Perl AK, Cremer H, Christofori G, Semb H (1999) Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J Cell Biol 144:325–337

    PubMed  CAS  PubMed Central  Google Scholar 

  • Evans ML, McCrimmon RJ, Flanagan DE, Keshavarz T, Fan X, McNay EC, Jacob RJ, Sherwin RS (2004) Hypothalamic ATP-sensitive K+ channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses. Diabetes 53:2542–2551

    PubMed  CAS  Google Scholar 

  • Fehmann H-C, Strowski M, Göke B (1995) Functional characterization of somatostatin receptors expressed on hamster glucagonoma cells. Am J Physiol Endocrinol Metab 268:E40–E47

    CAS  Google Scholar 

  • Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fineman M, Weyer C, Maggs DG, Strobel S, Kolterman OG (2002a) The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm Metab Res 34:504–508

    PubMed  CAS  Google Scholar 

  • Fineman MS, Koda JE, Shen LZ, Strobel SA, Maggs DG, Weyer C, Kolterman OG (2002b) The human amylin analog, pramlintide, corrects postprandial hyperglucagonemia in patients with type 1 diabetes. Metabolism 51:636–641

    PubMed  CAS  Google Scholar 

  • Franklin IK, Wollheim CB (2004) GABA in the endocrine pancreas: its putative role as an islet cell paracrine-signalling molecule. J Gen Physiol 123:185–190

    PubMed  CAS  PubMed Central  Google Scholar 

  • Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB (2005) β-cell secretory products activate α-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808–1815

    PubMed  CAS  Google Scholar 

  • Fukami A, Seino Y, Ozaki N, Yamamoto M, Sugiyama C, Sakamoto-Miura E, Himeno T, Takagishi Y, Tsunekawa S, Ali S, Drucker DJ, Murata Y, Seino Y, Oiso Y, Hayashi Y (2013) Ectopic expression of GIP in pancreatic β-cells maintains enhanced insulin secretion in mice with complete absence of proglucagon-derived peptides. Diabetes 62:510–518

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galassetti P, Davis SN (2000) Effects of insulin per se on neuroendocrine and metabolic counter-regulatory responses to hypoglycaemia. Clin Sci 99:351–362

    PubMed  CAS  Google Scholar 

  • Gao ZY, Drews G, Henquin JC (1991) Mechanisms of the stimulation of insulin release by oxytocin in normal mouse islets. Biochem J 276:169–174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gao ZY, Gerard M, Henquin JC (1992) Glucose- and concentration-dependence of vasopressin-induced hormone release by mouse pancreatic islets. Regul Pept 38:89–98

    PubMed  CAS  Google Scholar 

  • Gaskins HR, Baldeón ME, Selassie L, Beverly JL (1995) Glucose modulates γ-aminobutyric acid release from the pancreatic βTC6 cell line. J Biol Chem 270:30286–30289

    PubMed  CAS  Google Scholar 

  • Gedulin BR, Jodka CM, Herrmann K, Young AA (2007) Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul Pept 137:121–127

    Google Scholar 

  • Gelling RW, Du XQ, Dichmann DS, Romer J, Huang H, Cui L, Obici S, Tang B, Holst JJ, Fledelius C, Johansen PB, Rossetti L, Jelicks LA, Serup P, Nishimura E, Charron MJ (2003) Lower blood glucose, hyperglucagonemia, and pancreatic α-cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 100:1438–1443

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gerber PPG, Trimble ER, Wollheim CB, Renold AE, Miller RE (1981) Glucose and cyclic AMP as stimulators of somatostatin and insulin secretion from the isolated rat pancreas: a quantitative study. Diabetes 30:40–44

    PubMed  CAS  Google Scholar 

  • Gerich JE (1988) Lilly lecture 1988. Glucose counterregulation and its impact on diabetes mellitus. Diabetes 37:1608–1617

    PubMed  CAS  Google Scholar 

  • Gerich JE, Langlois M, Noacco C, Karam JH, Forsham PH (1973) Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic α-cell defect. Science 182:171–173

    PubMed  CAS  Google Scholar 

  • Gerich JE, Charles MA, Grodsky GM (1974a) Characterization of effects of arginine and glucose on glucagon and insulin release from perfused rat pancreas. J Clin Invest 54:833–841

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gerich JE, Langlois M, Schneider V, Karam JH, Noacco C (1974b) Effects of alterations of plasma free fatty acid levels on pancreatic glucagon secretion in man. J Clin Invest 53:1284–1289

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gerich JE, Lorenzi M, Schneider V, Karam JH, Rivier J, Guillemin R, Forsham PH (1974c) Effects of somatostatin on plasma glucose and glucagon levels in human diabetes mellitus. N Engl J Med 297:544–547

    Google Scholar 

  • Gerich JE, Lorenzi M, Schneider V, Kwan CW, Karam JH, Guillemin R, Forsham PH (1974d) Inhibition of pancreatic glucagon responses to arginine by somatostatin in normal man and in insulin-dependent diabetics. Diabetes 23:876–880

    PubMed  CAS  Google Scholar 

  • Gerich JE, Lorenzi M, Bier DM, Schneider V, Tsalikian E, Karam JH, Forsham PH (1975a) Prevention of human diabetic ketoacidosis by somatostatin: role of glucagon. N Engl J Med 292:985–989

    PubMed  CAS  Google Scholar 

  • Gerich JE, Tsalikian E, Lorenzi M, Schneider V, Bohannon NV, Gustafson G, Karam JH (1975b) Normalization of fasting hyperglucagonemia and excessive glucagon responses to intravenous arginine in human diabetes mellitus by prolonged infusion of insulin. J Clin Endocrinol Metab 41:1178

    PubMed  CAS  Google Scholar 

  • Gerich JE, Langlois M, Noacco C, Lorenzi M, Karam JH, Forsham PH (1976a) Comparison of suppressive effects of elevated plasma glucose and free fatty acid levels on glucagon secretion in normal and insulin-dependent diabetic subjects. Evidence for selective α-cell insensitivity to glucose in diabetes mellitus. J Clin Invest 58:320–325

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gerich JE, Charles MA, Grodsky GM (1976b) Regulation of pancreatic insulin and glucagon. Annu Rev Physiol 38:353–388

    PubMed  CAS  Google Scholar 

  • Gersell DJ, Gingerich RL, Greider MH (1979) Regional distribution and concentration of pancreatic polypeptide in the human and canine pancreas. Diabetes 28:11–15

    PubMed  CAS  Google Scholar 

  • Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic β-cell function. Endocr Rev 22:565–604

    PubMed  CAS  Google Scholar 

  • Gilon P, Campistron G, Geffard M, Remacle C (1988) Immunocytochemical localisation of GABA in endocrine cells of the rat entero-pancreatic system. Biol Cell 62:265–273

    PubMed  CAS  Google Scholar 

  • Gilon P, Tappaz M, Remacle C (1991a) Localization of GAD-like immunoreactivity in the pancreas and stomach of the rat and mouse. Histochemistry 96:355–365

    PubMed  CAS  Google Scholar 

  • Gilon P, Bertrand G, Loubatières-Mariani MM, Remacle C, Henquin JC (1991b) The influence of γ-aminobutyric acid on hormone release by the mouse and rat endocrine pancreas. Endocrinology 129:2521–2529

    PubMed  CAS  Google Scholar 

  • Gilon P, Ravier MA, Jonas JC, Henquin JC (2002) Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51(Suppl 1):S144–S151

    PubMed  CAS  Google Scholar 

  • Goodner CJ, Walike BC, Koerker DJ, Ensinck JW, Brown AC, Chideckel EW, Palmer J, Kalnasy L (1977) Insulin, glucagon, and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science 195:177–179

    PubMed  CAS  Google Scholar 

  • Goodner CJ, Hom FG, Koerker DJ (1982) Hepatic glucose production oscillates in synchrony with the islet secretory cycle in pasting rhesus monkeys. Science 215:1257–1259

    PubMed  CAS  Google Scholar 

  • Goodner CJ, Koerker DJ, Stagner JI, Samols E (1991) In vitro pancreatic hormonal pulses are less regular and more frequent than in vivo. Am J Physiol Endocrinol Metab 260:E422–E429

    CAS  Google Scholar 

  • Gopel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P (2000a) Regulation of glucagon release in mouse α-cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol 528:509–520

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gopel SO, Kanno T, Barg S, Rorsman P (2000b) Patch-clamp characterisation of somatostatin-secreting-cells in intact mouse pancreatic islets. J Physiol 528:497–507

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gopel S, Zhang Q, Eliasson L, Ma XS, Galvanovskis J, Kanno T, Salehi A, Rorsman P (2004) Capacitance measurements of exocytosis in mouse pancreatic α-, β- and δ-cells within intact islets of Langerhans. J Physiol 556:711–726

    PubMed  PubMed Central  Google Scholar 

  • Gorus FK, Malaisse WJ, Pipeleers DG (1984) Differences in glucose handling by pancreatic α- and β-cells. J Biol Chem 259:1196–1200

    PubMed  CAS  Google Scholar 

  • Grapengiesser E, Salehi A, Qader SS, Hellman B (2006) Glucose induces glucagon release pulses antisynchronous with insulin and sensitive to purinoceptor inhibition. Endocrinology 147:3472–3477

    PubMed  CAS  Google Scholar 

  • Gravholt CH, Moller N, Jensen MD, Christiansen JS, Schmitz O (2001) Physiological levels of glucagon do not influence lipolysis in abdominal adipose tissue as assessed by microdialysis. J Clin Endocrinol Metab 86:2085–2089

    PubMed  CAS  Google Scholar 

  • Greenbaum CJ, Havel PJ, Taborsky GJ Jr, Klaff LJ (1991) Intra-islet insulin permits glucose to directly suppress pancreatic A cell function. J Clin Invest 88:767–773

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grimelius L, Capella C, Buffa R, Polak JM, Pearse AG, Solcia E (1976) Cytochemical and ultrastructural differentiation of enteroglucagon and pancreatic-type glucagon cells of the gastrointestinal tract. Virchows Arch B Cell Pathol 20:217–228

    PubMed  CAS  Google Scholar 

  • Gromada J, Bokvist K, Ding WG, Barg S, Buschard K, Renström E, Rorsman P (1997) Adrenaline stimulates glucagon secretion in pancreatic α-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol 110:217–228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gromada J, Hoy M, Olsen HL, Gotfredsen CF, Buschard K, Rorsman P, Bokvist K (2001a) Gi2 proteins couple somatostatin receptors to low-conductance K+ channels in rat pancreatic α-cells. Pflugers Arch 442:19–26

    PubMed  CAS  Google Scholar 

  • Gromada J, Hoy M, Buschard K, Salehi A, Rorsman P (2001b) Somatostatin inhibits exocytosis in rat pancreatic α-cells by Gi2-dependent activation of calcineurin and depriming of secretory granules. J Physiol (Lond) 535:519–532

    CAS  Google Scholar 

  • Gromada J, Ma XHM, Bokvist K, Salehi A, Berggren PO, Rorsman P (2004) ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1 −/− mouse α-cells. Diabetes 53:S181–S189

    PubMed  CAS  Google Scholar 

  • Gromada J, Franklin I, Wollheim CB (2007) α-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28:84–116

    PubMed  CAS  Google Scholar 

  • Gromada J, Duttaroy A, Rorsman P (2009) The insulin receptor talks to glucagon? Cell Metab 9:303–305

    PubMed  CAS  Google Scholar 

  • Gross R, Mialhe P (1974) Free fatty acid-glucagon feed-back mechanism. Diabetologia 10:277–283

    PubMed  CAS  Google Scholar 

  • Gu W, Winters KA, Motani AS, Komorowski R, Zhang Y, Liu Q, Wu X, Rulifson IC, Sivits G Jr, Graham M, Yan H, Wang P, Moore S, Meng T, Lindberg RA, Veniant MM (2010) Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor. Am J Physiol Endocrinol Metab 299:E624–E632

    PubMed  CAS  Google Scholar 

  • Gutniak M, Grill V, Wiechel KL, Efendic S (1987) Basal and meal-induced somatostatin-like immunoreactivity in healthy subjects and in IDDM and totally pancreatectomized patients. Effects of acute blood glucose normalization. Diabetes 36:802–807

    PubMed  CAS  Google Scholar 

  • Gyulkhandanyan AV, Lu H, Lee SC, Bhattacharjee A, Wijesekara N, Fox JE, MacDonald PE, Chimienti F, Dai FF, Wheeler MB (2008) Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic α-cells. J Biol Chem 283:10184–10197

    PubMed  CAS  Google Scholar 

  • Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschop MH (2010) The metabolic actions of glucagon revisited. Nat Rev Endocrinol 6:689–697

    PubMed  CAS  PubMed Central  Google Scholar 

  • Habegger KM, Stemmer K, Cheng C, Muller TD, Heppner KM, Ottaway N, Holland J, Hembree JL, Smiley D, Gelfanov V, Krishna R, Arafat AM, Konkar A, Belli S, Kapps M, Woods SC, Hofmann SM, D’Alessio D, Pfluger PT, Perez-Tilve D, Seeley RJ, Konishi M, Itoh N, Kharitonenkov A, Spranger J, DiMarchi RD, Tschop MH (2013) Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes 62:1453–1463

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hahn HJ, Gottschling HD, Woltanski P (1978) Effect of somatostatin on insulin secretion and cAMP content of isolated pancreatic rat islets. Metabolism 27:1291–1294

    PubMed  CAS  Google Scholar 

  • Han SM, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H, Chun S, Kim SW, Park JY, Lee KU, Kim MS (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48:2170–2178

    PubMed  CAS  Google Scholar 

  • Hancock AS, Du A, Liu J, Miller M, May CL (2010) Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice. Mol Endocrinol 24:1605–1614

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hansen BC, Jen KLC, Pek SB, Wolfe RA (1982) Rapid oscillations in plasma insulin, glucagon, and glucose in obese and normal weight humans. J Clin Endocrinol Metab 54:785–792

    PubMed  CAS  Google Scholar 

  • Hansen LH, Gromada J, Bouchelouche P, Whitmore T, Jelinek L, Kindsvogel W, Nishimura E (1998) Glucagon-mediated Ca2+ signaling in BHK cells expressing cloned human glucagon receptors. Am J Physiol Cell Physiol 274:C1552–C1562

    CAS  Google Scholar 

  • Hansen AM, Bodvarsdottir TB, Nordestgaard DN, Heller RS, Gotfredsen CF, Maedler K, Fels JJ, Holst JJ, Karlsen AE (2011) Upregulation of α-cell glucagon-like peptide 1 (GLP-1) in Psammomys obesus–an adaptive response to hyperglycaemia? Diabetologia 54:1379–1387

    PubMed  CAS  Google Scholar 

  • Hardy AB, Fox JE, Giglou PR, Wijesekara N, Bhattacharjee A, Sultan S, Gyulkhandanyan AV, Gaisano HY, MacDonald PE, Wheeler MB (2009) Characterization of Erg K+ channels in α- and β-cells of mouse and human islets. J Biol Chem 284:30441–30452

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hardy AB, Serino AS, Wijesekara N, Chimienti F, Wheeler MB (2011) Regulation of glucagon secretion by zinc: lessons from the β cell-specific Znt8 knockout mouse model. Diabetes Obes Metab 13(Suppl 1):112–117

    PubMed  CAS  Google Scholar 

  • Hare KJ, Vilsboll T, Holst JJ, Knop FK (2010a) Inappropriate glucagon response after oral compared with isoglycemic intravenous glucose administration in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 298:E832–E837

    PubMed  CAS  Google Scholar 

  • Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, Holst JJ (2010b) The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59:1765–1770

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hatton TW, Yip CC, Vranic M (1985) Biosynthesis of glucagon (IRG3500) in canine gastric mucosa. Diabetes 34:38–46

    PubMed  CAS  Google Scholar 

  • Hauge-Evans AC, King AJ, Carmignac D, Richardson CC, Robinson IC, Low MJ, Christie MR, Persaud SJ, Jones PM (2009) Somatostatin secreted by islet δ-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58:403–411

    PubMed  CAS  PubMed Central  Google Scholar 

  • Havel PJ, Taborsky GJ Jr (1994) The contribution of the autonomic nervous system to increased glucagon secretion during hypoglycemic stress: update 1994. Endocr Rev 2:201–204

    Google Scholar 

  • Havel PJ, Valverde C (1996) Autonomic mediation of glucagon secretion during insulin- induced hypoglycemia in rhesus monkeys. Diabetes 45:960–966

    PubMed  Google Scholar 

  • Havel PJ, Veith RC, Dunning BE, Taborsky GJ Jr (1991) Role for autonomic nervous system to increase pancreatic glucagon secretion during marked insulin-induced hypoglycemia in dogs. Diabetes 40:1107–1114

    PubMed  CAS  Google Scholar 

  • Havel PJ, Akpan JO, Curry DL, Stern JS, Gingerich RL, Ahrén B (1993) Autonomic control of pancreatic polypeptide and glucagon secretion during neuroglucopenia and hypoglycemia in mice. Am J Physiol Regul Integr Comp Physiol 265:R246–R254

    CAS  Google Scholar 

  • Hayashi Y (2011) Metabolic impact of glucagon deficiency. Diabetes Obes Metab 13(Suppl 1):151–157

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Yamamoto M, Mizoguchi H, Watanabe C, Ito R, Yamamoto S, Sun XY, Murata Y (2009) Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet α-cells but not of intestinal L-cells. Mol Endocrinol 23:1990–1999

    PubMed  CAS  Google Scholar 

  • Heimberg H, De Vos A, Pipeleers DG, Thorens B, Schuit F (1995) Differences in glucose transporter gene expression between rat pancreatic α- and β-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem 270:8971–8975

    PubMed  CAS  Google Scholar 

  • Heimberg H, De Vos A, Moens K, Quartier E, Bouwens L, Pipeleers DG, Van Schaftingen E, Madsen O, Schuit F (1996) The glucose sensor protein glucokinase is expressed in glucagon- producing α-cells. Proc Natl Acad Sci USA 93:7036–7041

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heller SR, Cryer PE (1991) Hypoinsulinemia is not critical to glucose recovery from hypoglycemia in humans. Am J Physiol 261:E41–E48

    PubMed  CAS  Google Scholar 

  • Heller RS, Kieffer TJ, Habener JF (1997) Insulinotropic glucagon-like peptide 1 receptor expression in glucagon-producing α-cells of the rat endocrine pancreas. Diabetes 46:785–791

    PubMed  CAS  Google Scholar 

  • Hellman B, Salehi A, Gylfe E, Dansk H, Grapengiesser E (2009) Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets. Endocrinology 150:5334–5340

    PubMed  CAS  Google Scholar 

  • Hellman B, Salehi A, Grapengiesser E, Gylfe E (2012) Isolated mouse islets respond to glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in antisynchrony with glucagon. Biochem Biophys Res Commun 417:1219–1223

    PubMed  CAS  Google Scholar 

  • Henningsson R, Lundquist I (1998) Arginine-induced insulin release is decreased and glucagon increased in parallel with islet NO production. Am J Physiol Endocrinol Metab 275:E500–E506

    CAS  Google Scholar 

  • Henquin JC, Rahier J (2011) Pancreatic α-cell mass in European subjects with type 2 diabetes. Diabetologia 54:1720–1725

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heppner KM, Habegger KM, Day J, Pfluger PT, Perez-Tilve D, Ward B, Gelfanov V, Woods SC, DiMarchi R, Tschop M (2010) Glucagon regulation of energy metabolism. Physiol Behav 100:545–548

    PubMed  CAS  Google Scholar 

  • Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183

    PubMed  CAS  Google Scholar 

  • Hjortoe GM, Hagel GM, Terry BR, Thastrup O, Arkhammar POG (2004) Functional identification and monitoring of individual α- and β-cells in cultured mouse islets of Langerhans. Acta Diabetol 41:185–193

    PubMed  CAS  Google Scholar 

  • Holst JJ, Aggestrup S, Loud FB, Olesen M (1983a) Content and gel filtration profiles of glucagon-like and somatostatin-like immunoreactivity in human fundic mucosa. J Clin Endocrinol Metab 56:729–732

    PubMed  CAS  Google Scholar 

  • Holst JJ, Pedersen JH, Baldissera F, Stadil F (1983b) Circulating glucagon after total pancreatectomy in man. Diabetologia 25:396–399

    PubMed  CAS  Google Scholar 

  • Holst JJ, Bersani M, Johnsen AH, Kofod H, Hartmann B, Orskov C (1994) Proglucagon processing in porcine and human pancreas. J Biol Chem 269:18827–18833

    PubMed  CAS  Google Scholar 

  • Holst JJ, Vilsboll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136

    PubMed  CAS  Google Scholar 

  • Hong J, Abudula R, Chen J, Jeppesen PB, Dyrskog SE, Xiao J, Colombo M, Hermansen K (2005) The short-term effect of fatty acids on glucagon secretion is influenced by their chain length, spatial configuration, and degree of unsaturation: studies in vitro. Metabolism 54:1329–1336

    PubMed  CAS  Google Scholar 

  • Hong J, Chen L, Jeppesen PB, Nordentoft I, Hermansen K (2006) Stevioside counteracts the α-cell hypersecretion caused by long-term palmitate exposure. Am J Physiol Endocrinol Metab 290:E416–E422

    PubMed  CAS  Google Scholar 

  • Hong J, Jeppesen PB, Nordentoft I, Hermansen K (2007) Fatty acid-induced effect on glucagon secretion is mediated via fatty acid oxidation. Diabetes Metab Res Rev 23:202–210

    PubMed  CAS  Google Scholar 

  • Hope KM, Tran POT, Zhou H, Oseid E, Leroy E, Robertson RP (2004) Regulation of α-cell function by the β-cell in isolated human and rat islets deprived of glucose: the “Switch-off” hypothesis. Diabetes 53:1488–1495

    PubMed  CAS  Google Scholar 

  • Huang L, Shen H, Atkinson MA, Kennedy RT (1995) Detection of exocytosis at individual pancreatic β-cells by amperometry at a chemically modified microelectrode. Proc Natl Acad Sci USA 92:9608–9612

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang YC, Gaisano HY, Leung YM (2011a) Electrophysiological identification of mouse islet α-cells: from isolated single α-cells to in situ assessment within pancreas slices. Islets 3:139–143

    PubMed  CAS  Google Scholar 

  • Huang YC, Rupnik M, Gaisano HY (2011b) Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J Physiol 589:395–408

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang YC, Rupnik MS, Karimian N, Herrera PL, Gilon P, Feng ZP, Gaisano HY (2013) In situ electrophysiological examination of pancreatic α-cells in the streptozotocin-induced diabetes model, revealing the cellular basis of glucagon hypersecretion. Diabetes 62:519–530

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hunyady B, Hipkin RW, Schonbrunn A, Mezey E (1997) Immunohistochemical localization of somatostatin receptor SST2A in the rat pancreas. Endocrinology 138:2632–2635

    Google Scholar 

  • Ikeda T, Yoshida T, Ito Y, Murakami I, Mokuda O, Tominaga M, Mashiba H (1987) Effect of β-hydroxybutyrate and acetoacetate on insulin and glucagon secretion from perfused rat pancreas. Arch Biochem Biophys 257:140–143

    PubMed  CAS  Google Scholar 

  • Ipp E, Dobbs RE, Arimura A, Vale W, Harris V, Unger RH (1977) Release of immunoreactive somatostatin from the pancreas in response to glucose, amino acids, pancreozymin-cholecystokinin, and tolbutamide. J Clin Invest 60:760–765

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB (2003) Islet β-cell secretion determines glucagon release from neighbouring α-cells. Nat Cell Biol 5:330–335

    PubMed  CAS  Google Scholar 

  • Jamison RA, Stark R, Dong J, Yonemitsu S, Zhang D, Shulman GI, Kibbey RG (2011) Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats. Am J Physiol Endocrinol Metab 301:E1174–E1183

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jaspan JB, Lever E, Polonsky KS, Van Cauter E (1986) In vivo pulsatility of pancreatic islet peptides. Am J Physiol 251:E215–E226

    PubMed  CAS  Google Scholar 

  • Jelinek LJ, Lok S, Rosenberg GB, Smith RA, Grant FJ, Biggs SH, Bensch PA, Kuijper JL, Sheppard PO, Sprecher CA, O’Hara PJ, Foster D, Walker KM, Chen LHJ, McKernan PA, Kindsvogel W (1993) Expression cloning and signaling properties of the rat glucagon receptor. Science 259:1614–1616

    PubMed  CAS  Google Scholar 

  • Jijakli H, Rasschaert J, Nadi AB, Leclercq-Meyer V, Sener A, Malaisse WJ (1996) Relevance of lactate dehydrogenase activity to the control of oxidative glycolysis in pancreatic islet β-cell. Arch Biochem Biophys 327:260–264

    PubMed  CAS  Google Scholar 

  • Jin Y, Korol SV, Jin Z, Barg S, Birnir B (2013) In intact islets interstitial GABA activates GABAA receptors that generate tonic currents in α-cells. PLoS One 8:e67228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renström E (2005) Cav2.3 calcium channels control second-phase insulin release. J Clin Invest 115:146–154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson D, Bennett ES (2006) Isoform-specific effects of the β2 subunit on voltage-gated sodium channel gating. J Biol Chem 281:25875–25881

    PubMed  CAS  Google Scholar 

  • Johnson DG, Goebel CU, Hruby VJ, Bregman MD, Trivedi D (1982) Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science 215:1115–1116

    PubMed  CAS  Google Scholar 

  • Jones BJ, Tan T, Bloom SR (2012) Minireview: glucagon in stress and energy homeostasis. Endocrinology 153:1049–1054

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jorgensen NB, Dirksen C, Bojsen-Moller KN, Jacobsen SH, Worm D, Hansen DL, Kristiansen VB, Naver L, Madsbad S, Holst JJ (2013) Exaggerated glucagon-like peptide 1 response is important for improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes 62:3044–3052

    PubMed  PubMed Central  Google Scholar 

  • Kailey B, van de Bunt M, Cheley S, Johnson PR, MacDonald PE, Gloyn AL, Rorsman P, Braun M (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells. Am J Physiol Endocrinol Metab 303:E1107–E1116

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kang L, Routh VH, Kuzhikandathil EV, Gaspers LD, Levin BE (2004) Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 53:549–559

    PubMed  CAS  Google Scholar 

  • Kanno T, Gopel SO, Rorsman P, Wakui M (2002) Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on α-, β- and δ-cells of the pancreatic islet. Neurosci Res 42:79–90

    PubMed  CAS  Google Scholar 

  • Karimian N, Qin T, Liang T, Osundiji M, Huang Y, Teich T, Riddell MC, Cattral MS, Coy DH, Vranic M, Gaisano HY (2013) Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes 62:2968–2977

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karschin C, Ecke C, Ashcroft FM, Karschin A (1997) Overlapping distribution of KATP channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 401:59–64

    PubMed  CAS  Google Scholar 

  • Kawai K, Ipp E, Orci L, Perrelet A, Unger RH (1982) Circulating somatostatin acts on the islets of Langerhans by way of a somatostatin-poor compartment. Science 218:477–478

    PubMed  CAS  Google Scholar 

  • Kawamori D, Kulkarni RN (2009) Insulin modulation of glucagon secretion: the role of insulin and other factors in the regulation of glucagon secretion. Islets 1:276–279

    PubMed  Google Scholar 

  • Kawamori D, Kurpad AJ, Hu J, Liew CW, Shih JL, Ford EL, Herrera PL, Polonsky KS, McGuinness OP, Kulkarni RN (2009) Insulin signaling in α-cells modulates glucagon secretion in vivo. Cell Metab 9:350–361

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kawamori D, Welters HJ, Kulkarni RN (2010) Molecular pathways underlying the pathogenesis of pancreatic α-cell dysfunction. Adv Exp Med Biol 654:421–445

    PubMed  CAS  Google Scholar 

  • Kawamori D, Akiyama M, Hu J, Hambro B, Kulkarni RN (2011) Growth factor signalling in the regulation of α-cell fate. Diabetes Obes Metab 13(Suppl 1):21–30

    PubMed  CAS  Google Scholar 

  • Kendall DM, Poitout V, Olson LK, Sorenson RL, Robertson RP (1995) Somatostatin coordinately regulates glucagon gene expression and exocytosis in HIT-T15 cells. J Clin Invest 96:2496–2502

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kern W, Offenheuser S, Born J, Fehm HL (1996) Entrainment of ultradian oscillations in the secretion of insulin and glucagon to the nonrapid eye movement rapid eye movement sleep rhythm in humans. J Clin Endocrinol Metab 81:1541–1547

    PubMed  CAS  Google Scholar 

  • Kieffer TJ, Habener JL (1999) The glucagon-like peptides. Endocr Rev 20:876–913

    PubMed  CAS  Google Scholar 

  • Kilimnik G, Kim A, Jo J, Miller K, Hara M (2009) Quantification of pancreatic islet distribution in situ in mice. Am J Physiol Endocrinol Metab 297:E1331–E1338

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kimball SR, Siegfried BA, Jefferson LS (2004) Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. J Biol Chem 279:54103–54109

    PubMed  CAS  Google Scholar 

  • Kleinman R, Gingerich R, Ohning G, Wong H, Olthoff K, Walsh J, Brunicardi FC (1995) The influence of somatostatin on glucagon and pancreatic polypeptide secretion in the isolated perfused human pancreas. Int J Pancreatol 18:51–57

    PubMed  CAS  Google Scholar 

  • Knop FK, Vilsboll T, Madsbad S, Holst JJ, Krarup T (2007a) Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin effect in type 2 diabetes mellitus. Diabetologia 50:797–805

    PubMed  CAS  Google Scholar 

  • Knop FK, Vilsboll T, Hojberg PV, Larsen S, Madsbad S, Volund A, Holst JJ, Krarup T (2007b) Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56:1951–1959

    PubMed  CAS  Google Scholar 

  • Knop FK, Hare KJ, Pedersen J, Hendel JW, Poulsen SS, Holst JJ, Vilsboll T (2011) Prohormone convertase 2 positive enteroendocrine cells are more abundant in patients with type 2 diabetes – a potential source of gut-derived glucagon. Diabetes 60:A478

    Google Scholar 

  • Komjati M, Bratusch-Marrain P, Waldhausl W (1986) Superior efficacy of pulsatile versus continuous hormone exposure on hepatic glucose production in vitro. Endocrinology 118:312–319

    PubMed  CAS  Google Scholar 

  • Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109–1111

    PubMed  CAS  Google Scholar 

  • Kosinski JR, Hubert J, Carrington PE, Chicchi GG, Mu J, Miller C, Cao J, Bianchi E, Pessi A, SinhaRoy R, Marsh DJ, Pocai A (2012) The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity (Silver Spring) 20:1566–1571

    CAS  Google Scholar 

  • Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, Patel SC, Patel YC (1999) Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells – a quantitative double-label immunohistochemical analysis. Diabetes 48:77–85

    PubMed  CAS  Google Scholar 

  • Lacerda AE, Kim HS, Ruth P, Perez-Reyes E, Flockerzi V, Hofmann F, Birnbaumer L, Brown AM (1991) Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352:527–530

    PubMed  CAS  Google Scholar 

  • Lang DA, Matthews DR, Peto J, Turner RC (1979) Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N Engl J Med 301:1023–1027

    PubMed  CAS  Google Scholar 

  • Lang DA, Matthews DR, Burnett M, Ward GM, Turner RC (1982) Pulsatile synchronous basal insulin and glucagon secretion in man. Diabetes 31:22–26

    PubMed  CAS  Google Scholar 

  • Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997) Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77:257–270

    PubMed  CAS  Google Scholar 

  • Larsson H, Ahrén B (2000) Glucose intolerance is predicted by low insulin secretion and high glucagon secretion: outcome of a prospective study in postmenopausal Caucasian women. Diabetologia 43:194–202

    PubMed  CAS  Google Scholar 

  • Larsson LI, Holst J, Hakanson R, Sundler F (1975) Distribution and properties of glucagon immunoreactivity in the digestive tract of various mammals: an immunohistochemical and immunochemical study. Histochemistry 44:281–290

    PubMed  CAS  Google Scholar 

  • Le Marchand SJ, Piston DW (2010) Glucose suppression of glucagon secretion: metabolic and calcium responses from α-cells in intact mouse pancreatic islets. J Biol Chem 285:14389–14398

    PubMed  PubMed Central  Google Scholar 

  • Le Marchand SJ, Piston DW (2012) Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet α-cells. PLoS One 7:e47084

    PubMed  PubMed Central  Google Scholar 

  • Leclerc I, Sun G, Morris C, Fernandez-Millan E, Nyirenda M, Rutter GA (2011) AMP-activated protein kinase regulates glucagon secretion from mouse pancreatic α-cells. Diabetologia 54:125–134

    PubMed  CAS  Google Scholar 

  • Leclercq-Meyer V, Marchand J, Woussen Colle MC, Giroix MH, Malaisse WJ (1985) Multiple effects of leucine on glucagon, insulin, and somatostatin secretion from the perfused rat pancreas. Endocrinology 116:1168–1174

    PubMed  CAS  Google Scholar 

  • Lee YC, Asa SL, Drucker DJ (1992) Glucagon gene 5′-flanking sequences direct expression of simian virus 40 large T antigen to the intestine, producing carcinoma of the large bowel in transgenic mice. J Biol Chem 267:10705–10708

    PubMed  CAS  Google Scholar 

  • Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH (2011) Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60:391–397

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee Y, Berglund ED, Wang MY, Fu X, Yu X, Charron MJ, Burgess SC, Unger RH (2012) Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc Natl Acad Sci USA 109:14972–14976

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lefebvre PJ (2011) Early milestones in glucagon research. Diabetes Obes Metab 13(Suppl 1):1–4

    PubMed  CAS  Google Scholar 

  • Lefebvre PJ, Luyckx AS (1980) Neurotransmitters and glucagon release from the isolated, perfused canine stomach. Diabetes 29:697–701

    PubMed  CAS  Google Scholar 

  • Lefèbvre PJ, Paolisso G, Scheen AJ, Henquin JC (1987) Pulsatility of insulin and glucagon release: physiological significance and pharmacological implications. Diabetologia 30:443–452

    PubMed  Google Scholar 

  • Lefebvre P, Paolisso G, Scheen AJ (1996) Pulsatility of glucagon. Handb Exp Pharmacol 123:105–113

    CAS  Google Scholar 

  • Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van LL, Waelkens E, Chimienti F, Rutter GA, Gilon P, in’t Veld PA, Schuit FC (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leung YM, Ahmed I, Sheu L, Tsushima RG, Diamant NE, Hara M, Gaisano HY (2005) Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse. Endocrinology 146:4766–4775

    PubMed  CAS  Google Scholar 

  • Leung YM, Ahmed I, Sheu L, Gao X, Hara M, Tsushima RG, Diamant NE, Gaisano HY (2006a) Insulin regulates islet α-cell function by reducing KATP channel sensitivity to adenosine 5′-triphosphate inhibition. Endocrinology 147:2155–2162

    PubMed  CAS  Google Scholar 

  • Leung YM, Ahmed I, Sheu L, Tsushima RG, Diamant NE, Gaisano HY (2006b) Two populations of pancreatic islet α-cells displaying distinct Ca2+ channel properties. Biochem Biophys Res Commun 345:340–344

    PubMed  CAS  Google Scholar 

  • Levetan C, Want LL, Weyer C, Strobel SA, Crean J, Wang Y, Maggs DG, Kolterman OG, Chandran M, Mudaliar SR, Henry RR (2003) Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglyceride excursions among patients with type 1 diabetes intensively treated with insulin pumps. Diabetes Care 26:1–8

    PubMed  CAS  Google Scholar 

  • Li C, Liu C, Nissim I, Chen J, Chen P, Doliba N, Zhang T, Nissim I, Daikhin Y, Stokes D, Yudkoff M, Bennett MJ, Stanley CA, Matschinsky FM, Naji A (2013) Regulation of glucagon secretion in normal and diabetic human islets by γ-hydroxybutyrate and glycine. J Biol Chem 288:3938–3951

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liang Y, Osborne MC, Monia BP, Bhanot S, Gaarde WA, Reed C, She P, Jetton TL, Demarest KT (2004) Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53:410–417

    PubMed  CAS  Google Scholar 

  • Liu YJ, Vieira E, Gylfe E (2004) A store-operated mechanism determines the activity of the electrically excitable glucagon-secreting pancreatic α-cell. Cell Calcium 35:357–365

    PubMed  CAS  Google Scholar 

  • Longuet C, Robledo AM, Dean ED, Dai C, Ali S, McGuinness I, de Chavez V, Vuguin PM, Charron MJ, Powers AC, Drucker DJ (2013) Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: evidence for a circulating α-cell growth factor. Diabetes 62:1196–1205

    PubMed  CAS  PubMed Central  Google Scholar 

  • Louw J, Woodroof CW, Wolfe-Coote SA (1997) Distribution of endocrine cells displaying immunoreactivity for one or more peptides in the pancreas of the adult vervet monkey (Cercopithecus aethiops). Anat Rec 247:405–412

    PubMed  CAS  Google Scholar 

  • Ludvigsen E (2007) Somatostatin receptor expression and biological functions in endocrine pancreatic cells: review based on a doctoral thesis. Ups J Med Sci 112:1–20

    PubMed  Google Scholar 

  • Ludvigsen E, Olsson R, Stridsberg M, Janson ET, Sandler S (2004) Expression and distribution of somatostatin receptor subtypes in the pancreatic islets of mice and rats. J Histochem Cytochem 52:391–400

    PubMed  CAS  Google Scholar 

  • Ludvigsen E, Stridsberg M, Taylor JE, Culler MD, Oberg K, Janson ET, Sandler S (2007) Regulation of insulin and glucagon secretion from rat pancreatic islets in vitro by somatostatin analogues. Regul Pept 138:1–9

    PubMed  CAS  Google Scholar 

  • Lui EY, Asa SL, Drucker DJ, Lee YC, Brubaker PL (1990) Glucagon and related peptides in fetal rat hypothalamus in vivo and in vitro. Endocrinology 126:110–117

    PubMed  CAS  Google Scholar 

  • Luyckx AS, Gerard J, Gaspard U, Lefebvre PJ (1975) Plasma glucagon levels in normal women during pregnancy. Diabetologia 11:549–554

    PubMed  CAS  Google Scholar 

  • MacDonald PE, Obermuller S, Vikman J, Galvanovskis J, Rorsman P, Eliasson L (2005) Regulated exocytosis and kiss-and-run of synaptic-like microvesicles in INS-1 and primary rat β-cells. Diabetes 54:736–743

    PubMed  CAS  Google Scholar 

  • Macdonald PE, Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, Cox R, Eliasson L, Rorsman P (2007) A KATP channel-dependent pathway within α-cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 5:e143

    PubMed  PubMed Central  Google Scholar 

  • Manning Fox JE, Gyulkhandanyan AV, Satin LS, Wheeler MB (2006) Oscillatory membrane potential response to glucose in islet β-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147:4655–4663

    PubMed  CAS  Google Scholar 

  • Marhfour I, Moulin P, Marchandise J, Rahier J, Sempoux C, Guiot Y (2009) Impact of Sur1 gene inactivation on the morphology of mouse pancreatic endocrine tissue. Cell Tissue Res 335:505–515

    PubMed  CAS  Google Scholar 

  • Marroqui L, Vieira E, Gonzalez A, Nadal A, Quesada I (2011) Leptin downregulates expression of the gene encoding glucagon in αTC1-9 cells and mouse islets. Diabetologia 54:843–851

    PubMed  CAS  Google Scholar 

  • Marty N, Dallaporta M, Foretz M, Emery M, Tarussio D, Bady I, Binnert C, Beermann F, Thorens B (2005) Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. J Clin Invest 115:3545–3553

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maruyama H, Hisatomi A, Orci L, Grodsky GM, Unger RH (1984) Insulin within islets is a physiologic glucagon release inhibitor. J Clin Invest 74:2296–2299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Masur K, Tibaduiza EC, Chen C, Ligon B, Beinborn M (2005) Basal receptor activation by locally produced glucagon-like peptide-1 contributes to maintaining β-cell function. Mol Endocrinol 19:1373–1382

    PubMed  CAS  Google Scholar 

  • Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B, Drucker DJ (2003) International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 55:167–194

    PubMed  CAS  Google Scholar 

  • McCrimmon RJ, Fan X, Ding Y, Zhu W, Jacob RJ, Sherwin RS (2004) Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53:1953–1958

    PubMed  CAS  Google Scholar 

  • McCrimmon RJ, Evans ML, Fan X, McNay EC, Chan O, Ding Y, Zhu W, Gram DX, Sherwin RS (2005) Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes 54:3169–3174

    PubMed  CAS  Google Scholar 

  • McGuinness OP (2005) Defective glucose homeostasis during infection. Annu Rev Nutr 25:9–35

    PubMed  CAS  Google Scholar 

  • Meier JJ, Gallwitz B, Siepmann N, Holst JJ, Deacon CF, Schmidt WE, Nauck MA (2003) Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 46:798–801

    PubMed  CAS  Google Scholar 

  • Meier JJ, Kjems LL, Veldhuis JD, Lefèbvre P, Butler PC (2006) Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion. Further evidence for the intraislet insulin hypothesis. Diabetes 55:1051–1056

    PubMed  CAS  Google Scholar 

  • Menge BA, Gruber L, Jorgensen SM, Deacon CF, Schmidt WE, Veldhuis JD, Holst JJ, Meier JJ (2011) Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes. Diabetes 60:2160–2168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mercan D, Delville J-P, Leclercq-Meyer V, Malaisse WJ (1993) Preferential stimulation by D-glucose of oxidative glycolysis in pancreatic islets: comparison between B and non-B cells. Biochem Int 29:475–481

    CAS  Google Scholar 

  • Mercan D, Kadiata MM, Malaisse WJ (1999) Differences in the time course of the metabolic response of B and non-B pancreatic islet cells to D-glucose and metabolized or non-metabolized hexose esters. Biochem Biophys Res Commun 262:346–349

    PubMed  CAS  Google Scholar 

  • Mighiu PI, Yue JT, Filippi BM, Abraham MA, Chari M, Lam CK, Yang CS, Christian NR, Charron MJ, Lam TK (2013) Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat Med 19:766–772

    PubMed  CAS  Google Scholar 

  • Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512

    PubMed  CAS  Google Scholar 

  • Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256–260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Minami K, Miki T, Kadowaki T, Seino S (2004) Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice. Diabetes 53:S176–S180

    PubMed  CAS  Google Scholar 

  • Moens K, Heimberg H, Flamez D, Huypens P, Quartier E, Ling ZD, Pipeleers DG, Gremlich S, Thorens B, Schuit F (1996) Expression and functional activity of glucagon, glucagon-like peptide I, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells. Diabetes 45:257–261

    PubMed  CAS  Google Scholar 

  • Moller N, Beckwith R, Butler PC, Christensen NJ, Orskov H, Alberti KG (1989) Metabolic and hormonal responses to exogenous hyperthermia in man. Clin Endocrinol (Oxf) 30:651–660

    CAS  Google Scholar 

  • Muller WA, Faloona GR, Unger RH (1973) Hyperglucagonemia in diabetic ketoacidosis. Its prevalence and significance. Am J Med 54:52–57

    PubMed  CAS  Google Scholar 

  • Munoz A, Hu M, Hussain K, Bryan J, Aguilar-Bryan L, Rajan AS (2005) Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Endocrinology 146:5514–5521

    PubMed  CAS  Google Scholar 

  • Muscogiuri G, Mezza T, Prioletta A, Sorice GP, Clemente G, Sarno G, Nuzzo G, Pontecorvi A, Holst JJ, Giaccari A (2013) Removal of duodenum elicits GLP-1 secretion. Diabetes Care 36:1641–1646

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nadal A, Quesada I, Soria B (1999) Homologous and heterologous asynchronicity between identified α-, β- and δ-cells within intact islets of Langerhans in the mouse. J Physiol (Lond) 517:85–93

    CAS  Google Scholar 

  • Nagamatsu S, Watanabe T, Nakamichi Y, Yamamura C, Tsuzuki K, Matsushima S (1999) A-soluble N-ethylmaleimide-sensitive factor attachment protein is expressed in pancreatic β-cells and functions in insulin but not γ-aminobutyric acid secretion. J Biol Chem 274:8053–8060

    PubMed  CAS  Google Scholar 

  • Nian M, Drucker DJ, Irwin D (1999) Divergent regulation of human and rat proglucagon gene promoters in vivo. Am J Physiol 277:G829–G837

    PubMed  CAS  Google Scholar 

  • Nian M, Gu J, Irwin DM, Drucker DJ (2002) Human glucagon gene promoter sequences regulating tissue-specific versus nutrient-regulated gene expression. Am J Physiol Regul Integr Comp Physiol 282:R173–R183

    PubMed  CAS  Google Scholar 

  • Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K, Taneja TK, da Silva X, Libert S, Froguel P, Scharfmann R, Stetsyuk V, Ravassard P, Parker H, Gribble FM, Reimann F, Sladek R, Hughes SJ, Johnson PR, Masseboeuf M, Burcelin R, Baldwin SA, Liu M, Lara-Lemus R, Arvan P, Schuit FC, Wheeler MB, Chimienti F, Rutter GA (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nie Y, Nakashima M, Brubaker PL, Li QL, Perfetti R, Jansen E, Zambre Y, Pipeleers D, Friedman TC (2000) Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. J Clin Invest 105:955–965

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nieto FR, Cobos EJ, Tejada MA, Sanchez-Fernandez C, Gonzalez-Cano R, Cendan CM (2012) Tetrodotoxin (TTX) as a therapeutic agent for pain. Mar Drugs 10:281–305

    PubMed  CAS  PubMed Central  Google Scholar 

  • Novak U, Wilks A, Buell G, McEwen S (1987) Identical mRNA for preproglucagon in pancreas and gut. Eur J Biochem 164:553–558

    PubMed  CAS  Google Scholar 

  • Nyholm B, Orskov L, Hove KY, Gravholt CH, Moller N, Alberti KGMM, Moyses C, Kolterman O, Schmitz O (1999) The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 48:935–941

    PubMed  CAS  Google Scholar 

  • Ohneda A, Watanabe K, Horigome K, Sakai T, Kai Y, Oikawa S (1978) Abnormal response of pancreatic glucagon to glycemic changes in diabetes mellitus. J Clin Endocrinol Metab 46:504–510

    PubMed  CAS  Google Scholar 

  • Ohneda A, Kobayashi T, Nihei J (1984) Response of extrapancreatic immunoreactive glucagon to intraluminal nutrients in pancreatectomized dogs. Horm Metab Res 16:344–348

    PubMed  CAS  Google Scholar 

  • Ohtsuka K, Nimura Y, Yasui K (1986) Paradoxical elevations of plasma glucagon levels in patients after pancreatectomy or gastrectomy. Jpn J Surg 16:1–7

    PubMed  CAS  Google Scholar 

  • Olofsson CS, Salehi A, Gopel SO, Holm C, Rorsman P (2004) Palmitate stimulation of glucagon secretion in mouse pancreatic α-cells results from activation of L-type calcium channels and elevation of cytoplasmic calcium. Diabetes 53:2836–2843

    PubMed  CAS  Google Scholar 

  • Olsen HL, Theander S, Bokvist K, Buschard K, Wollheim CB, Gromada J (2005) Glucose stimulates glucagon release in single rat α-cells by mechanisms that mirror the stimulus-secretion coupling in β-cells. Endocrinology 146:4861–4870

    PubMed  CAS  Google Scholar 

  • Orci L, Baetens D, Rufener C, Amherdt M, Ravazzola M, Studer P, Malaisse-Lagae F, Unger RH (1976a) Hypertrophy and hyperplasia of somatostatin-containing δ-cells in diabetes. Proc Natl Acad Sci USA 73:1338–1342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orci L, Baetens D, Ravazzola M, Stefan Y, Malaisse-Lagae F (1976b) Pancreatic polypeptide and glucagon: non-random distribution in pancreatic islets. Life Sci 19:1811–1815

    PubMed  CAS  Google Scholar 

  • Orskov C, Holst JJ, Poulsen SS, Kirkegaard P (1987) Pancreatic and intestinal processing of proglucagon in man. Diabetologia 30:874–881

    PubMed  CAS  Google Scholar 

  • Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ (1994) Tissue and plasma concentrations of amidated and glycine- extended glucagon-like peptide 1 in humans. Diabetes 43:535–539

    PubMed  CAS  Google Scholar 

  • Ostenson CG, Grebing C (1985) Evidence for metabolic regulation of pancreatic glucagon secretion by L-glutamine. Acta Endocrinol (Copenh) 108:386–391

    CAS  Google Scholar 

  • Panagiotidis G, Salehi AA, Westermark P, Lundquist I (1992) Homologous islet amyloid polypeptide: effects on plasma levels of glucagon, insulin and glucose in the mouse. Diabetes Res Clin Pract 18:167–171

    PubMed  CAS  Google Scholar 

  • Paolisso G, Buonocore S, Gentile S, Sgambato S, Varricchio M, Scheen A, D’Onofrio F, Lefebvre PJ (1990) Pulsatile glucagon has greater hyperglycaemic, lipolytic and ketogenic effects than continuous hormone delivery in man: effect of age. Diabetologia 33:272–277

    PubMed  CAS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    PubMed  CAS  Google Scholar 

  • Parker JC, Andrews KM, Allen MR, Stock JL, McNeish JD (2002) Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem Biophys Res Commun 290:839–843

    PubMed  CAS  Google Scholar 

  • Parker HE, Reimann F, Gribble FM (2010) Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert Rev Mol Med 12:e1

    PubMed  Google Scholar 

  • Patel YC, Wheatley T, Ning C (1981) Multiple forms of immunoreactive somatostatin: comparison of distribution in neural and nonneural tissues and portal plasma of the rat. Endocrinology 109:1943–1949

    PubMed  CAS  Google Scholar 

  • Patel YC, Amherdt M, Orci L (1982) Quantitative electron microscopic autoradiography of insulin, glucagon, and somatostatin binding sites on islets. Science 217:1155–1156

    PubMed  CAS  Google Scholar 

  • Pecker F, Pavoine C (1996) Mode of action of glucagon revisited. Handb Exp Pharmacol 123:75–104

    CAS  Google Scholar 

  • Peng IC, Chen Z, Sun W, Li YS, Marin TL, Hsu PH, Su MI, Cui X, Pan S, Lytle CY, Johnson DA, Blaeser F, Chatila T, Shyy JY (2012) Glucagon regulates ACC activity in adipocytes through the CAMKKβ/AMPK pathway. Am J Physiol Endocrinol Metab 302:E1560–E1568

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perez-Reyes E, Kim HS, Lacerda AE, Horne W, Wei XY, Rampe D, Campbell KP, Brown AM, Birnbaumer L (1989) Induction of calcium currents by the expression of the α1-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340:233–236

    PubMed  CAS  Google Scholar 

  • Philippe J (1991) Insulin regulation of the glucagon gene is mediated by an insulin-responsive DNA element. Proc Natl Acad Sci USA 88:7224–7227

    PubMed  CAS  PubMed Central  Google Scholar 

  • Philippe J (1996) The glucagon gene and its expression. Handb Exp Pharmacol 123:11–30

    CAS  Google Scholar 

  • Pipeleers DG, in’t Veld PA, Van de Winkel M, Maes E, Schuit FC, Gepts W (1985a) A new in vitro model for the study of pancreatic A and B cells. Endocrinology 117:806–816

    PubMed  CAS  Google Scholar 

  • Pipeleers DG, Schuit FC, In’t Veld PA, Maes E, Hooghe Peters EL, Van de Winkel M, Gepts W (1985b) Interplay of nutrients and hormones in the regulation of insulin release. Endocrinology 117:824–833

    PubMed  CAS  Google Scholar 

  • Pipeleers DG, Schuit FC, Van Schravendijk CF, Van de Winkel M (1985c) Interplay of nutrients and hormones in the regulation of glucagon release. Endocrinology 117:817–823

    PubMed  CAS  Google Scholar 

  • Pizarro-Delgado J, Braun M, Hernandez-Fisac I, Martin-Del-Rio R, Tamarit-Rodriguez J (2010) Glucose promotion of GABA metabolism contributes to the stimulation of insulin secretion in β-cells. Biochem J 431:381–389

    PubMed  CAS  Google Scholar 

  • Plant TD (1988) Na+ currents in cultured mouse pancreatic β-cells. Pflugers Arch 411:429–435

    PubMed  CAS  Google Scholar 

  • Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capito’ E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R (2009) Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58:2258–2266

    PubMed  CAS  PubMed Central  Google Scholar 

  • Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, Hansotia T, Drucker DJ, Wollheim C, Burcelin R, Thorens B (2004) Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 113:635–645

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quesada I, Todorova MG, Alonso-Magdalena P, Beltra M, Carneiro EM, Martin F, Nadal A, Soria B (2006a) Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified α- and β-cells within intact human islets of Langerhans. Diabetes 55:2463–2469

    PubMed  CAS  Google Scholar 

  • Quesada I, Todorova MG, Soria B (2006b) Different metabolic responses in α-, β-, and δ-cells of the islet of Langerhans monitored by redox confocal microscopy. Biophys J 90:2641–2650

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quesada I, Tuduri E, Ripoll C, Nadal A (2008) Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol 199:5–19

    PubMed  CAS  Google Scholar 

  • Quoix N, Cheng-Xue R, Guiot Y, Herrera PL, Henquin JC, Gilon P (2007) The GluCre-ROSA26EYFP mouse: a new model for easy identification of living pancreatic α-cells. FEBS Lett 581:4235–4240

    PubMed  CAS  Google Scholar 

  • Quoix N, Cheng-Xue R, Mattart L, Zeinoun Z, Guiot Y, Beauvois MC, Henquin JC, Gilon P (2009) Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse α-cells. Diabetes 58:412–421

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qureshi SA, Candelore MR, Xie D, Yang X, Tota LM, Ding VDH, Li Z, Bansal A, Miller C, Cohen SM, Jiang G, Brady E, Saperstein R, Duffy JL, Tata JR, Chapman KT, Moller DE, Zhang BB (2004) A novel glucagon receptor antagonist inhibits glucagon-mediated biological effects. Diabetes 53:3267–3273

    PubMed  CAS  Google Scholar 

  • Rahier J, Goebbels RM, Henquin JC (1983) Cellular composition of the human diabetic pancreas. Diabetologia 24:366–371

    PubMed  CAS  Google Scholar 

  • Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, Bryan J (1993) Sulfonylurea receptors and ATP-sensitive K+ channels in clonal pancreatic α-cells. Evidence for two high affinity sulfonylurea receptors. J Biol Chem 268:15221–15228

    PubMed  CAS  Google Scholar 

  • Raju B, Cryer PE (2005) Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon? Am J Physiol Endocrinol Metab 289:E181–E186

    PubMed  CAS  Google Scholar 

  • Ramnanan CJ, Edgerton DS, Kraft G, Cherrington AD (2011) Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab 13(Suppl 1):118–125

    PubMed  CAS  Google Scholar 

  • Ramracheya R, Ward C, Shigeto M, Walker JN, Amisten S, Zhang Q, Johnson PR, Rorsman P, Braun M (2010) Membrane potential-dependent inactivation of voltage-gated ion channels in α-cells inhibits glucagon secretion from human islets. Diabetes 59:2198–2208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ranganath L, Schaper F, Gama R, Morgan L (2001) Does glucagon have a lipolytic effect? Clin Endocrinol (Oxf) 54:125–126

    CAS  Google Scholar 

  • Raskin P, Unger RH (1978a) Hyperglucagonemia and its suppression. Importance in the metabolic control of diabetes. N Engl J Med 299:433–436

    PubMed  CAS  Google Scholar 

  • Raskin P, Unger RH (1978b) Effect of insulin therapy on the profiles of plasma immunoreactive glucagon in juvenile-type and adult-type diabetics. Diabetes 27:411–419

    PubMed  CAS  Google Scholar 

  • Ravazzola M, Unger RH, Orci L (1981) Demonstration of glucagon in the stomach of human fetuses. Diabetes 30:879–882

    PubMed  CAS  Google Scholar 

  • Ravier MA, Rutter GA (2005) Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic α-cells. Diabetes 54:1789–1797

    PubMed  CAS  Google Scholar 

  • Reaven GM, Chen YD, Golay A, Swislocki AL, Jaspan JB (1987) Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 64:106–110

    PubMed  CAS  Google Scholar 

  • Reetz A, Solimena M, Matteoli M, Folli F, Takei K, De Camilli P (1991) GABA and pancreatic β-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10:1275–1284

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reichlin S (1983a) Somatostatin. N Engl J Med 309:1495–1501

    PubMed  CAS  Google Scholar 

  • Reichlin S (1983b) Somatostatin (second of two parts). N Engl J Med 309:1556–1563

    PubMed  CAS  Google Scholar 

  • Robertson RP, Zhou H, Slucca M (2011) A role for zinc in pancreatic islet β-cell cross-talk with the α-cell during hypoglycaemia. Diabetes Obes Metab 13(Suppl 1):106–111

    PubMed  CAS  Google Scholar 

  • Rocha DM, Faloona GR, Unger RH (1972) Glucagon-stimulating activity of 20 amino acids in dogs. J Clin Invest 51:2346–2351

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodgers RL (2012) Glucagon and cyclic AMP: time to turn the page? Curr Diabetes Rev 8:362–381

    PubMed  CAS  Google Scholar 

  • Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, Berggren PO, Caicedo A (2011a) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez-Diaz R, Dando R, Jacques-Silva MC, Fachado A, Molina J, Abdulreda MH, Ricordi C, Roper SD, Berggren PO, Caicedo A (2011b) α-cells secrete acetylcholine as a non-neuronal paracrine signal priming β-cell function in humans. Nat Med 17:888–892

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rohrer S, Menge BA, Gruber L, Deacon CF, Schmidt WE, Veldhuis JD, Holst JJ, Meier JJ (2012) Impaired crosstalk between pulsatile insulin and glucagon secretion in prediabetic individuals. J Clin Endocrinol Metab 97:E791–E795

    PubMed  CAS  Google Scholar 

  • Ronner P, Matschinsky FM, Hang TL, Epstein AJ, Buettger C (1993) Sulfonylurea-binding sites and ATP-sensitive K+ channels in α-TC glucagonoma and β-TC insulinoma cells. Diabetes 42:1760–1772

    PubMed  CAS  Google Scholar 

  • Rorsman P, Hellman B (1988) Voltage-activated currents in guinea pig pancreatic α2 cells. Evidence for Ca2+-dependent action potentials. J Gen Physiol 91:223–242

    PubMed  CAS  Google Scholar 

  • Rorsman P, Berggren PO, Bokvist K, Ericson H, Mohler H, Ostenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341:233–236

    PubMed  CAS  Google Scholar 

  • Rorsman P, Ashcroft FM, Berggren PO (1991) Regulation of glucagon release from pancreatic α-cells. Biochem Pharmacol 41:1783–1790

    PubMed  CAS  Google Scholar 

  • Rorsman P, Salehi SA, Abdulkader F, Braun M, MacDonald PE (2008) KATP-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab 19:277–284

    PubMed  CAS  Google Scholar 

  • Rorsman P, Braun M, Zhang Q (2012) Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 51(3–4):300–308

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rossowski WJ, Coy DH (1994) Specific inhibition of rat pancreatic insulin or glucagon release by receptor-selective somatostatin analogs. Biochem Biophys Res Commun 205:341–346

    PubMed  CAS  Google Scholar 

  • Rouille Y, Westermark G, Martin SK, Steiner DF (1994) Proglucagon is processed to glucagon by prohormone convertase PC2 in αTC1-6 cells. Proc Natl Acad Sci USA 91:3242–3246

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rutter GA (2010) Think zinc: new roles for zinc in the control of insulin secretion. Islets 2:49–50

    PubMed  Google Scholar 

  • Salehi A, Vieira E, Gylfe E (2006) Paradoxical stimulation of glucagon secretion by high glucose concentrations. Diabetes 55:2318–2323

    PubMed  CAS  Google Scholar 

  • Salehi A, Qader SS, Grapengiesser E, Hellman B (2007) Pulses of somatostatin release are slightly delayed compared with insulin and antisynchronous to glucagon. Regul Pept 144:43–49

    PubMed  CAS  Google Scholar 

  • Salehi A, Parandeh F, Fredholm BB, Grapengiesser E, Hellman B (2009) Absence of adenosine A1 receptors unmasks pulses of insulin release and prolongs those of glucagon and somatostatin. Life Sci 85:470–476

    PubMed  CAS  Google Scholar 

  • Samols E, Stagner JI, Ewart RB, Marks V (1988) The order of islet microvascular cellular perfusion is B–A–D in the perfused rat pancreas. J Clin Invest 82:350–353

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schafer MK, Day R, Cullinan WE, Chretien M, Seidah NG, Watson SJ (1993) Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J Neurosci 13:1258–1279

    PubMed  CAS  Google Scholar 

  • Schuit FC, Derde MP, Pipeleers DG (1989) Sensitivity of rat pancreatic A and B cells to somatostatin. Diabetologia 32:207–212

    PubMed  CAS  Google Scholar 

  • Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, Prentki M (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in β-cells. J Biol Chem 272:18572–18579

    PubMed  CAS  Google Scholar 

  • Seino S, Iwanaga T, Nagashima K, Miki T (2000) Diverse roles of KATP channels learned from Kir6.2 genetically engineered mice. Diabetes 49:311–318

    PubMed  CAS  Google Scholar 

  • Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, Girotti M, Marie S, MacDonald MJ, Wollheim CB, Rutter GA (1994) Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cells. Potential role in nutrient sensing. J Biol Chem 269:4895–4902

    PubMed  CAS  Google Scholar 

  • Seyffert WA Jr, Madison LL (1967) Physiologic effects of metabolic fuels carbohydrate metabolism. I. Acute effect of elevation of plasma free fatty acids on hepatic glucose output, peripheral glucose utilization, serum insulin, and plasma glucagon levels. Diabetes 16:765–776

    PubMed  CAS  Google Scholar 

  • Shah P, Basu A, Basu R, Rizza R (1999) Impact of lack of suppression of glucagon on glucose tolerance in humans. Am J Physiol Endocrinol Metab 277:E283–E290

    CAS  Google Scholar 

  • Shah P, Vella A, Basu A, Basu R, Schwenk WF, Rizza RA (2000) Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 85:4053–4059

    PubMed  CAS  Google Scholar 

  • Shimizu H, Tsuchiya T, Ohtani K, Shimomura K, Oh I, Ariyama Y, Okada S, Kishi M, Mori M (2011) Glucagon plays an important role in the modification of insulin secretion by leptin. Islets 3:150–154

    PubMed  Google Scholar 

  • Shiota C, Rocheleau JV, Shiota M, Piston DW, Magnuson MA (2005) Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor. Am J Physiol Endocrinol Metab 289:E570–E577

    PubMed  CAS  Google Scholar 

  • Shyng SL, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664

    PubMed  CAS  PubMed Central  Google Scholar 

  • Silvestre RA, Rodríguez-Gallardo J, Jodka C, Parkes DG, Pittner RA, Young AA, Marco J (2001) Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am J Physiol Endocrinol Metab 280:E443–E449

    PubMed  CAS  Google Scholar 

  • Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N (1991) The roles of the subunits in the function of the calcium channel. Science 253:1553–1557

    PubMed  CAS  Google Scholar 

  • Singh V, Brendel MD, Zacharias S, Mergler S, Jahr H, Wiedenmann B, Bretzel RG, Plockinger U, Strowski MZ (2007) Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J Clin Endocrinol Metab 92:673–680

    PubMed  CAS  Google Scholar 

  • Siu FY, He M, de Graff C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2012) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449

    Google Scholar 

  • Sivarajah P, Wheeler MB, Irwin DM (2001) Evolution of receptors for proglucagon-derived peptides: isolation of frog glucagon receptors. Comp Biochem Physiol B Biochem Mol Biol 128:517–527

    PubMed  CAS  Google Scholar 

  • Sloop KW, Cao JX, Siesky AM, Zhang HY, Bodenmiller DM, Cox AL, Jacobs SJ, Moyers JS, Owens RA, Showalter AD, Brenner MB, Raap A, Gromada J, Berridge BR, Monteith DK, Porksen N, McKay RA, Monia BP, Bhanot S, Watts LM, Michael MD (2004) Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J Clin Invest 113:1571–1581

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smismans A, Schuit F, Pipeleers D (1997) Nutrient regulation of γ-aminobutyric acid release from islet β-cells. Diabetologia 40:1411–1415

    PubMed  CAS  Google Scholar 

  • Solomon TP, Knudsen SH, Karstoft K, Winding K, Holst JJ, Pedersen BK (2012) Examining the effects of hyperglycemia on pancreatic endocrine function in humans: evidence for in vivo glucotoxicity. J Clin Endocrinol Metab 97:4682–4691

    PubMed  CAS  Google Scholar 

  • Sorensen H, Winzell MS, Brand CL, Fosgerau K, Gelling RW, Nishimura E, Ahren B (2006) Glucagon receptor knockout mice display increased insulin sensitivity and impaired β-cell function. Diabetes 55:3463–3469

    PubMed  Google Scholar 

  • Sorenson RL, Elde RP (1983) Dissociation of glucose stimulation of somatostatin and insulin release from glucose inhibition of glucagon release in the isolated perfused rat pancreas. Diabetes 32:561–567

    PubMed  CAS  Google Scholar 

  • Spigelman AF, Dai X, MacDonald PE (2010) Voltage-dependent K+ channels are positive regulators of α-cell action potential generation and glucagon secretion in mice and humans. Diabetologia 53:1917–1926

    PubMed  CAS  Google Scholar 

  • Stagner JI, Samols E (1986) Retrograde perfusion as a model for testing the relative effects of glucose versus insulin on the A cell. J Clin Invest 77:1034–1037

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stagner JI, Samols E (1992) The vascular order of islet cellular perfusion in the human pancreas. Diabetes 41:93–97

    PubMed  CAS  Google Scholar 

  • Stagner JI, Samols E, Weir GC (1980) Sustained oscillations of insulin, glucagon and somatostatin from the isolated canine pancreas during exposure to a constant glucose concentration. J Clin Invest 65:939–942

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stagner JI, Samols E, Bonner-Weir S (1988) β–α–δ pancreatic islet cellular perfusion in dogs. Diabetes 37:1715–1721

    PubMed  CAS  Google Scholar 

  • Stagner JI, Samols E, Marks V (1989) The anterograde and retrograde infusion of glucagon antibodies suggests that A cells are vascularly perfused before D cells within the rat islet. Diabetologia 32:203–206

    PubMed  CAS  Google Scholar 

  • Starke A, Imamura T, Unger RH (1987) Relationship of glucagon suppression by insulin and somatostatin to the ambient glucose concentration. J Clin Invest 79:20–24

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steiner DJ, Kim A, Miller K, Hara M (2010) Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2:135–145

    PubMed  PubMed Central  Google Scholar 

  • Strowski MZ, Blake AD (2008) Function and expression of somatostatin receptors of the endocrine pancreas. Mol Cell Endocrinol 286:169–179

    PubMed  CAS  Google Scholar 

  • Strowski MZ, Parmar RM, Blake AD, Schaeffer JM (2000) Somatostatin inhibits insulin and glucagon secretion via two receptor subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141:111–117

    PubMed  CAS  Google Scholar 

  • Strowski MZ, Cashen DE, Birzin ET, Yang L, Singh V, Jacks TM, Nowak KW, Rohrer SP, Patchett AA, Smith RG, Schaeffer JM (2006) Antidiabetic activity of a highly potent and selective nonpeptide somatostatin receptor subtype-2 agonist. Endocrinology 147:4664–4673

    PubMed  CAS  Google Scholar 

  • Sundler F, Alumets J, Holst J, Larsson LI, Hakanson R (1976) Ultrastructural identification of cells storing pancreatic-type glucagon in dog stomach. Histochemistry 50:33–37

    PubMed  CAS  Google Scholar 

  • Suzuki M, Fujikura K, Inagaki N, Seino S, Takata K (1997) Localization of the ATP-sensitive K+ channel subunit Kir6.2 in mouse pancreas. Diabetes 46:1440–1444

    PubMed  CAS  Google Scholar 

  • Svoboda M, Tastenoy M, Vertongen P, Robberecht P (1994) Relative quantitative analysis of glucagon receptor mRNA in rat tissues. Mol Cell Endocrinol 105:131–137

    PubMed  CAS  Google Scholar 

  • Taborsky GJ Jr, Mundinger TO (2012) Minireview: the role of the autonomic nervous system in mediating the glucagon response to hypoglycemia. Endocrinology 153:1055–1062

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taborsky GJ, Ahrén B, Havel PJ (1998) Autonomic mediation of glucagon secretion during hypoglycemia – implications for impaired α-cell responses in type 1 diabetes. Diabetes 47:995–1005

    PubMed  CAS  Google Scholar 

  • Takahashi R, Ishihara H, Tamura A, Yamaguchi S, Yamada T, Takei D, Katagiri H, Endou H, Ola Y (2006) Cell type-specific activation of metabolism reveals that β-cell secretion suppresses glucagon release from α-cells in rat pancreatic islets. Am J Physiol Endocrinol Metab 290:E308–E316

    PubMed  CAS  Google Scholar 

  • Tan TM, Field BC, McCullough KA, Troke RC, Chambers ES, Salem V, Gonzalez MJ, Baynes KC, De SA, Viardot A, Alsafi A, Frost GS, Ghatei MA, Bloom SR (2013) Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62:1131–1138

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taneera J, Jin Z, Jin Y, Muhammed SJ, Zhang E, Lang S, Salehi A, Korsgren O, Renstrom E, Groop L, Birnir B (2012) γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia 55:1985–1994

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taniguchi H, Okada Y, Seguchi H, Shimada C, Seki M, Tsutou A, Baba S (1979) High concentration of γ-aminobutyric acid in pancreatic β-cells. Diabetes 28:629–633

    PubMed  CAS  Google Scholar 

  • Thomas-Reetz AC, Hell JW, During MJ, Walch-Solimena C, Jahn R, De Camilli P (1993) A γ-aminobutyric acid transporter driven by a proton pump is present in synaptic-like microvesicles of pancreatic β-cells. Proc Natl Acad Sci USA 90:5317–5321

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464:1149–1154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thorel F, Damond N, Chera S, Wiederkehr A, Thorens B, Meda P, Wollheim CB, Herrera PL (2011) Normal glucagon signaling and β-cell function after near-total α-cell ablation in adult mice. Diabetes 60:2872–2882

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thorens B (2011) Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes Metab 13(Suppl 1):82–88

    PubMed  CAS  Google Scholar 

  • Thorens B (2012) Sensing of glucose in the brain. Handb Exp Pharmacol 209:277–294

    PubMed  CAS  Google Scholar 

  • Tian G, Sandler S, Gylfe E, Tengholm A (2011) Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets. Diabetes 60:1535–1543

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tian G, Tepikin AV, Tengholm A, Gylfe E (2012) cAMP induces stromal interaction molecule 1 (STIM1) puncta but neither Orai1 protein clustering nor store-operated Ca2+ entry (SOCE) in islet cells. J Biol Chem 287:9862–9872

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tornehave D, Kristensen P, Romer J, Knudsen LB, Heller RS (2008) Expression of the GLP-1 receptor in mouse, rat, and human pancreas. J Histochem Cytochem 56:841–851

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tottene A, Moretti A, Pietrobon D (1996) Functional diversity of P-type and R-type calcium channels in rat cerebellar neurons. J Neurosci 16:6353–6363

    PubMed  CAS  Google Scholar 

  • Trapp S, Ballanyi K (1995) KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro. J Physiol 487(Pt 1):37–50

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsutsumi Y (1984) Immunohistochemical studies on glucagon, glicentin and pancreatic polypeptide in human stomach: normal and pathological conditions. Histochem J 16:869–883

    PubMed  CAS  Google Scholar 

  • Tu JA, Tuch BE, Si ZY (1999) Expression and regulation of glucokinase in rat islet β- and α-cells during development. Endocrinology 140:3762–3766

    PubMed  CAS  Google Scholar 

  • Tuduri E, Marroqui L, Soriano S, Ropero AB, Batista TM, Piquer S, Lopez-Boado MA, Carneiro EM, Gomis R, Nadal A, Quesada I (2009) Inhibitory effects of leptin on pancreatic α-cell function. Diabetes 58:1616–1624

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ugleholdt R, Zhu X, Deacon CF, Orskov C, Steiner DF, Holst JJ (2004) Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1. Endocrinology 145:1349–1355

    PubMed  CAS  Google Scholar 

  • Unger RH (1985) Glucagon physiology and pathophysiology in the light of new advances. Diabetologia 28:574–578

    PubMed  CAS  Google Scholar 

  • Unger RH, Cherrington AD (2012) Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest 122:4–12

    PubMed  CAS  PubMed Central  Google Scholar 

  • Unger RH, Orci L (2010) Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci USA 107:16009–16012

    PubMed  CAS  PubMed Central  Google Scholar 

  • Unger RH, Ohneda A, Aguilar-Parada E, Eisentraut AM (1969) The role of aminogenic glucagon secretion in blood glucose homeostasis. J Clin Invest 48:810–822

    PubMed  CAS  PubMed Central  Google Scholar 

  • Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM (1970) Studies of pancreatic α-cell function in normal and diabetic subjects. J Clin Invest 49:837–848

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vieira E, Liu YJ, Gylfe E (2004) Involvement of α1 and β-adrenoceptors in adrenaline stimulation of the glucagon-secreting mouse α-cell. Naunyn Schmiedebergs Arch Pharmacol 369:179–183

    PubMed  CAS  Google Scholar 

  • Vieira E, Salehi A, Gylfe E (2005) Glucose inhibits glucagon release independently of KATP channels. Diabetologia 48:A177

    Google Scholar 

  • Vieira E, Salehi A, Gylfe E (2007) Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic α-cells. Diabetologia 50:370–379

    PubMed  CAS  Google Scholar 

  • Vignali S, Leiss V, Karl R, Hofmann F, Welling A (2006) Characterization of voltage-dependent sodium and calcium channels in maintain pancreatic α- and β-cells. J Physiol 572:691–706

    PubMed  CAS  PubMed Central  Google Scholar 

  • von Meyenn F, Porstmann T, Gasser E, Selevsek N, Schmidt A, Aebersold R, Stoffel M (2013) Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab 17:436–447

    Google Scholar 

  • Vuguin PM, Kedees MH, Cui L, Guz Y, Gelling RW, Nejathaim M, Charron MJ, Teitelman G (2006) Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology 147:3995–4006

    PubMed  CAS  Google Scholar 

  • Wakelam MJO, Murphy GJ, Hruby UJ, Houslay MD (1986) Activation of two signal-transduction systems in hepatocytes by glucagon. Nature 323:68–70

    PubMed  CAS  Google Scholar 

  • Walker D, De Waard M (1998) Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci 21:148–154

    PubMed  CAS  Google Scholar 

  • Walker JN, Ramracheya R, Zhang Q, Johnson PR, Braun M, Rorsman P (2011) Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes Metab 13(Suppl 1):95–105

    PubMed  CAS  Google Scholar 

  • Wang JL, McDaniel ML (1990) Secretagogue-induced oscillations of cytoplasmic Ca2+ in single β-and α-cells obtained from pancreatic islets by fluorescence-activated cell sorting. Biochem Biophys Res Commun 166:813–818

    PubMed  CAS  Google Scholar 

  • Wang C, Kerckhofs K, Van de Casteele M, Smolders I, Pipeleers D, Ling Z (2006) Glucose inhibits GABA release by pancreatic β-cells through an increase in GABA shunt activity. Am J Physiol Endocrinol Metab 290:E494–E499

    PubMed  CAS  Google Scholar 

  • Wang MY, Chen L, Clark GO, Lee Y, Stevens RD, Ilkayeva OR, Wenner BR, Bain JR, Charron MJ, Newgard CB, Unger RH (2010) Leptin therapy in insulin-deficient type I diabetes. Proc Natl Acad Sci USA 107:4813–4819

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Li G, Goode J, Paz JC, Ouyang K, Screaton R, Fischer WH, Chen J, Tabas I, Montminy M (2012) Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485:128–132

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Zielinski MC, Misawa R, Wen P, Wang TY, Wang CZ, Witkowski P, Hara M (2013) Quantitative analysis of pancreatic polypeptide cell distribution in the human pancreas. PLoS One 8:e55501

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watanabe C, Seino Y, Miyahira H, Yamamoto M, Fukami A, Ozaki N, Takagishi Y, Sato J, Fukuwatari T, Shibata K, Oiso Y, Murata Y, Hayashi Y (2012) Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Diabetes 61:74–84

    PubMed  CAS  PubMed Central  Google Scholar 

  • Webb GC, Akbar MS, Zhao C, Swift HH, Steiner DF (2002) Glucagon replacement via micro-osmotic pump corrects hypoglycemia and α-cell hyperplasia in prohormone convertase 2 knockout mice. Diabetes 51:398–405

    PubMed  CAS  Google Scholar 

  • Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2:999–1017

    PubMed  CAS  Google Scholar 

  • Weigle DS (1987) Pulsatile secretion of fuel-regulatory hormones. Diabetes 36:764–775

    PubMed  CAS  Google Scholar 

  • Weigle DS, Goodner CJ (1986) Evidence that the physiological pulse frequency of glucagon secretion optimizes glucose production by perifused rat hepatocytes. Endocrinology 118:1606–1613

    PubMed  CAS  Google Scholar 

  • Weigle DS, Koerker DJ, Goodner CJ (1984) Pulsatile glucagon delivery enhances glucose production by perifused rat hepatocytes. Am J Physiol 247:E564–E568

    PubMed  CAS  Google Scholar 

  • Weir GC, Knowlton SD, Atkins RF, McKennan KX, Martin DB (1976) Glucagon secretion from the perfused pancreas of streptozotocin-treated rats. Diabetes 25:275–282

    PubMed  CAS  Google Scholar 

  • Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M (2004) Glucose inhibition of glucagon secretion from rat α-cells is mediated by GABA released from neighboring β-cells. Diabetes 53:1038–1045

    PubMed  CAS  Google Scholar 

  • Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    PubMed  CAS  Google Scholar 

  • Whalley NM, Pritchard LE, Smith DM, White A (2011) Processing of proglucagon to GLP-1 in pancreatic α-cells: is this a paracrine mechanism enabling GLP-1 to act on β-cells? J Endocrinol 211:99–106

    PubMed  CAS  Google Scholar 

  • Wideman RD, Yu ILY, Webber TD, Verchere CB, Johnson JD, Cheung AT, Kieffer TJ (2006) Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1). Proc Natl Acad Sci USA 103:13468–13473

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) β-cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668

    PubMed  CAS  Google Scholar 

  • Winarto A, Miki T, Seino S, Iwanaga T (2001) Morphological changes in pancreatic islets of KATP channel-deficient mice: the involvement of KATP channels in the survival of insulin cells and the maintenance of islet architecture. Arch Histol Cytol 64:59–67

    PubMed  CAS  Google Scholar 

  • Winnock F, Ling Z, De Proft R, Dejonghe S, Schuit F, Gorus F, Pipeleers D (2002) Correlation between GABA release from rat islet β-cells and their metabolic state. Am J Physiol Endocrinol Metab 282:E937–E942

    PubMed  CAS  Google Scholar 

  • Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wynne K, Park AJ, Small CJ, Meeran K, Ghatei MA, Frost GS, Bloom SR (2006) Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond) 30:1729–1736

    CAS  Google Scholar 

  • Xia F, Leung YM, Gaisano G, Gao X, Chen Y, Fox JE, Bhattacharjee A, Wheeler MB, Gaisano HY, Tsushima RG (2007) Targeting of voltage-gated K+ and Ca2+ channels and soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins to cholesterol-rich lipid rafts in pancreatic α-cells: effects on glucagon stimulus-secretion coupling. Endocrinology 148:2157–2167

    PubMed  CAS  Google Scholar 

  • Xu Y, Xie X (2009) Glucagon receptor mediates calcium signaling by coupling to Gαq/11 and Gαi/o in HEK293 cells. J Recept Signal Transduct Res 29:318–325

    PubMed  CAS  Google Scholar 

  • Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N, Liu S, Wendt A, Deng S, Ebina Y, Wheeler MB, Braun M, Wang Q (2006) Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 3:47–58

    PubMed  CAS  Google Scholar 

  • Yamato E, Ikegami H, Tahara Y, Cha T, Yoneda H, Noma Y, Shima K, Ogihara T (1990) Role of protein kinase C in the regulation of glucagon gene expression by arginine. Biochem Biophys Res Commun 171:898–904

    PubMed  CAS  Google Scholar 

  • Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53:597–607

    PubMed  CAS  Google Scholar 

  • Yang J, MacDougall ML, McDowell MT, Xi L, Wei R, Zavadoski WJ, Molloy MP, Baker JD, Kuhn M, Cabrera O, Treadway JL (2011) Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes. BMC Genomics 12:281

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138

    PubMed  CAS  Google Scholar 

  • Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y (1999) Somatostatin induces hyperpolarization in pancreatic islet a cells by activating a G protein-gated K+ channel. FEBS Lett 444:265–269

    PubMed  CAS  Google Scholar 

  • Young A (2005) Inhibition of glucagon secretion. Adv Pharmacol 52:151–171

    PubMed  CAS  Google Scholar 

  • Yu R, Dhall D, Nissen NN, Zhou C, Ren SG (2011) Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice. PLoS One 6:e23397

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yue JT, Burdett E, Coy DH, Giacca A, Efendic S, Vranic M (2012) Somatostatin receptor type 2 antagonism improves glucagon and corticosterone counterregulatory responses to hypoglycemia in streptozotocin-induced diabetic rats. Diabetes 61:197–207

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Zhang N, Gyulkhandanyan AV, Xu E, Gaisano HY, Wheeler MB, Wang Q (2008) Presence of functional hyperpolarisation-activated cyclic nucleotide-gated channels in clonal α cell lines and rat islet α cells. Diabetologia 51:2290–2298

    PubMed  CAS  Google Scholar 

  • Zhao C, Wilson MC, Schuit F, Halestrap AP, Rutter GA (2001) Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 50:361–366

    PubMed  CAS  Google Scholar 

  • Zhou H, Zhang T, Harmon JS, Bryan J, Robertson RP (2007) Zinc, not insulin, regulates the rat α-cell response to hypoglycemia in vivo. Diabetes 56:1107–1112

    PubMed  CAS  Google Scholar 

  • Zhou C, Dhall D, Nissen NN, Chen CR, Yu R (2009) Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, α-cell hyperplasia, and islet cell tumor. Pancreas 38:941–946

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu X, Zhou A, Dey A, Norrbom C, Carroll R, Zhang C, Laurent V, Lindberg I, Ugleholdt R, Holst JJ, Steiner DF (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc Natl Acad Sci USA 99:10293–10298

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

PG is supported by the Fonds de la Recherche Scientifique Médicale (Brussels, grant 3.4554.10) and the Actions de Recherche Concertées (ARC 13/18-051) from the General Direction of Scientific Research of the French Community of Belgium. PG is Research Director, and AGR and HYC are postdoctoral researchers of the Fonds National de la Recherche Scientifique, Brussels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Gilon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Gilon, P., Cheng-Xue, R., Lai, B.K., Chae, HY., Gómez-Ruiz, A. (2015). Physiological and Pathophysiological Control of Glucagon Secretion by Pancreatic α-Cells. In: Islam, M. (eds) Islets of Langerhans. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6686-0_37

Download citation

Publish with us

Policies and ethics