Skip to main content

Molecular Clocks

  • Reference work entry
  • First Online:
  • 180 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Molecular clock. A hypothesis that predicts a constant rate of molecular evolution among species. It is also a method of genetic analysis that can be used to estimate evolutionary rates and timescales using data from DNA or proteins.

Introduction

The tempo and mode of evolution are central themes of biological research. This places importance on the estimation of evolutionary timescales, which provide the backdrop for our interpretations of evolutionary patterns and processes. Traditionally, such inferences were made from the fossil record, coupled with radiometric dating. Fossils can provide an estimate of when different lineages first appeared and when species diverged from each other. In many cases, however, such data are unavailable, forcing us to look elsewhere for a source of temporal information. The “molecular clock,” proposed in the 1960s (Zuckerkandl and Pauling, 1962, 1965), allows evolutionary timescales to be estimated using genetic data. Molecular clocks have...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P., and Slowinski, J. B., 2002. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annual Review of Ecology, Evolution, and Systematics, 33, 707–740.

    Article  Google Scholar 

  • Bromham, L., 2009. Why do species vary in their rate of molecular evolution? Biology Letters, 5, 401–404.

    Article  Google Scholar 

  • Bromham, L., and Penny, D., 2003. The modern molecular clock. Nature Reviews. Genetics, 4, 216–224.

    Article  Google Scholar 

  • Brower, A. V. Z., 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 6491–6495.

    Article  Google Scholar 

  • Brown, W. M., George, M., and Wilson, A. C., 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76, 1967–1971.

    Article  Google Scholar 

  • Cooper, A., and Penny, D., 1997. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science, 275, 1109–1113.

    Article  Google Scholar 

  • Dickerson, R. E., 1971. The structure of cytochrome c and the rates of molecular evolution. Journal of Molecular Evolution, 1, 26–45.

    Article  Google Scholar 

  • Doolittle, R. F., and Blomback, B., 1964. Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature, 202, 147–152.

    Article  Google Scholar 

  • Doolittle, R. F., Feng, D.-F., Tsang, S., Cho, G., and Little, E., 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science, 271, 470–477.

    Article  Google Scholar 

  • García-Moreno, J., 2004. Is there a universal mtDNA clock for birds? Journal of Avian Biology, 35, 465–468.

    Article  Google Scholar 

  • Graur, D., and Martin, W., 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics, 20, 80–86.

    Article  Google Scholar 

  • Ho, S. Y. W., 2007. Calibrating molecular estimates of substitution rates and divergence times in birds. Journal of Avian Biology, 38, 409–414.

    Article  Google Scholar 

  • Ho, S. Y. W., and Lo, N., 2013. The insect molecular clock. Australian Journal of Entomology, 52, 101–105.

    Article  Google Scholar 

  • Ho, S. Y. W., and Phillips, M. J., 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology, 58, 367–380.

    Article  Google Scholar 

  • Ho, S. Y. W., Lanfear, R., Bromham, L., Phillips, M. J., Soubrier, J., Rodrigo, A. G., and Cooper, A., 2011. Time-dependent rates of molecular evolution. Molecular Ecology, 20, 3087–3101.

    Article  Google Scholar 

  • Howell, N., Bogolin Smejkal, C., Mackey, D. A., Chinnery, P. F., Turnbull, D. M., and Herrnstadt, C., 2003. The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. American Journal of Human Genetics, 72, 659–670.

    Article  Google Scholar 

  • Kimura, M., 1968. Evolutionary rate at the molecular level. Nature, 217, 624–626.

    Article  Google Scholar 

  • King, J. L., and Jukes, T. H., 1969. Non-Darwinian evolution. Science, 164, 788–798.

    Article  Google Scholar 

  • Kohne, D. E., 1970. Evolution of higher-organism DNA. Quarterly Reviews of Biophysics, 3, 327–375.

    Article  Google Scholar 

  • Kumar, S., 2005. Molecular clocks: four decades of evolution. Nature Reviews. Genetics, 6, 654–662.

    Article  Google Scholar 

  • Laird, C. D., McConaughy, B. L., and McCarthy, B. J., 1969. Rate of fixation of nucleotide substitutions in evolution. Nature, 224, 149–154.

    Article  Google Scholar 

  • Lanfear, R., Ho, S. Y. W., Davies, T. J., Moles, A. T., Aarssen, L., Swenson, N. G., Warman, L., Zanne, A. E., and Allen, A. P., 2013. Taller plants have lower rates of molecular evolution. Nature Communications, 224, 1879.

    Article  Google Scholar 

  • Marshall, C. R., 2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. American Naturalist, 171, 726–742.

    Article  Google Scholar 

  • Morgan, G. J., 1998. Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. Journal of the History of Biology, 31, 155–178.

    Article  Google Scholar 

  • Nabholz, B., Glémin, S., and Galtier, N., 2008. Strong variation of mitochondrial mutation rate across mammals – the longevity hypothesis. Molecular Biology and Evolution, 25, 120–130.

    Article  Google Scholar 

  • Ohta, T., 1972. Evolutionary rate of cistrons and DNA divergence. Journal of Molecular Evolution, 1, 150–157.

    Article  Google Scholar 

  • Ohta, T., 1973. Slightly deleterious mutant substitutions in evolution. Nature, 246, 96–98.

    Article  Google Scholar 

  • Papadopoulou, A., Anastasiou, I., and Vogler, A. P., 2010. Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution, 27, 1659–1672.

    Article  Google Scholar 

  • Pulquério, M. J. F., and Nichols, R. A., 2007. Dates from the molecular clock: how wrong can we be? Trends in Ecology & Evolution, 22, 180–184.

    Article  Google Scholar 

  • Runnegar, B., 1982. A molecular-clock date for the origin of the animal phyla. Lethaia, 15, 199–205.

    Article  Google Scholar 

  • Sanderson, M. J., 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution, 14, 1218–1231.

    Article  Google Scholar 

  • Sarich, V. M., and Wilson, A. C., 1967a. Rates of albumin evolution in primates. Proceedings of the National Academy of Sciences of the United States of America, 58, 142–148.

    Article  Google Scholar 

  • Sarich, V. M., and Wilson, A. C., 1967b. Immunological time scale for hominid evolution. Science, 158, 1200–1203.

    Article  Google Scholar 

  • Shields, G. F., and Wilson, A. C., 1987. Calibration of mitochondrial DNA evolution in geese. Journal of Molecular Evolution, 24, 212–217.

    Article  Google Scholar 

  • Simpson, G. G., 1964. Organisms and molecules in evolution. Science, 146, 1535–1538.

    Article  Google Scholar 

  • Springer, M. S., 1997. Molecular clocks and the timing of the placental and marsupial radiations in relation to the Cretaceous-Tertiary boundary. Journal of Mammalian Evolution, 4, 285–302.

    Article  Google Scholar 

  • Tajima, F., 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics, 135, 599–607.

    Google Scholar 

  • Thomas, J. A., Welch, J. J., Lanfear, R., and Bromham, L., 2010. A generation time effect on the rate of molecular evolution in invertebrates. Molecular Biology and Evolution, 27, 1173–1180.

    Article  Google Scholar 

  • Thorne, J. L., Kishino, H., and Painter, I. S., 1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution, 15, 1647–1657.

    Article  Google Scholar 

  • Weir, J. T., and Schluter, D., 2008. Calibrating the avian molecular clock. Molecular Ecology, 17, 2321–2328.

    Article  Google Scholar 

  • Welch, J. J., and Bromham, L., 2005. Molecular dating when rates vary. Trends in Ecology & Evolution, 20, 320–327.

    Article  Google Scholar 

  • Welch, J. J., Bininda-Emonds, O. R. P., and Bromham, L., 2008. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evolutionary Biology, 8, 53.

    Article  Google Scholar 

  • Wilkinson, R. D., Steiper, M. E., Soligo, C., Martin, R. D., Yang, Z., and Tavaré, S., 2011. Dating primate divergences through an integrated analysis of palaeontological and molecular data. Systematic Biology, 60, 16–31.

    Article  Google Scholar 

  • Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D., and Stoneking, M., 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society, 26, 375–400.

    Article  Google Scholar 

  • Wu, C.-I., and Li, W. H., 1985. Evidence for higher rates of nucleotide substitutions in rodents than in man. Proceedings of the National Academy of Sciences of the United States of America, 82, 1741–1745.

    Article  Google Scholar 

  • Zuckerkandl, E., and Pauling, L., 1962. Molecular disease, evolution and genetic heterogeneity. In Kasha, M., and Pullman, B. (eds.), Horizons in Biochemistry. New York: Academic, pp. 189–225.

    Google Scholar 

  • Zuckerkandl, E., and Pauling, L., 1965. Evolutionary divergence and convergence in proteins. In Bryson, V., and Vogel, H. J. (eds.), Evolving Genes and Proteins. New York: Academic, pp. 97–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Y. W. Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ho, S.Y.W. (2015). Molecular Clocks. In: Jack Rink, W., Thompson, J.W. (eds) Encyclopedia of Scientific Dating Methods. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6304-3_92

Download citation

Publish with us

Policies and ethics