Skip to main content

Astronomical Polarimetry: Polarized Views of Stars and Planets

  • Reference work entry

Abstract

Polarization is a fundamental property of light from astronomical objects, and measuring that polarization often yields crucial information, which is unobtainable otherwise. This chapter reviews the useful formalisms for describing polarization in the optical regime, the mechanisms for the creation of such polarization, and methods for measuring it. Particular emphasis is given on how to implement a polarimeter within an astronomical facility, and on how to deal with systematic effects that often limit the polarimetric performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    ​The profit may even be bidirectional as some developments for astronomical polarimetry have already found their spin-off in other applications, like remote sensing (Tyo et al. 2006) and biomedical applications.

  2. 2.

    ​The sign of Q depends on the choice of the observer. It is usually parallel or perpendicular to some convenient direction, such as the coordinate system used on the sky, or the optical table. More fundamental issues are related to the handedness, i.e., the direction from + Q to + U, and the sign of V. Particularly the latter has generated a lot of confusion in the literature (see Tinbergen (1996) and Clarke (2009) for extensive discussions on this matter), because the rotation direction of the E-vector changes orientation when looking at the propagating beam from the source’s or from the instrument’s point of view, and also when considering a co-moving or a fixed reference plane within which the E-vector is evaluated. Several (conflicting) conventions exist for positive handedness, but the best one can hope for is that the signs of Q, U, and V are unambiguously defined for each individual publication.

  3. 3.

    ​Note that this is not valid if the coordinate system is modified by M itself, for instance, if it contains an odd number of mirrors.

  4. 4.

    ​Determining the properties of anthropogenic aerosols that pose health hazards and can significantly influence global climate is therefore a main science case for the implementation of polarimetry on Earth-observing platforms.

  5. 5.

    ​The expected polarization from an exo-Jupiter is generally much larger than from our own Jupiter since the latter can never be observed at large scattering angles. The integrated polarization signals of the outer planets are therefore small, although specific polarized structures appear at large spatial resolution.

  6. 6.

    ​The term “dichroic” to describe the polarizing action of a material is particularly confusing since an identical term is also used to describe the wavelength dependence of coating reflectivities. The polarization effect was found to be related to color effects when it was discovered, and the terminology has stuck.

  7. 7.

    ​Fast, low-noise two-dimensional detectors are currently being developed mostly for application in wavefront sensors.

  8. 8.

    ​These are commercially available for machine vision applications.

  9. 9.

    ​The elements of the first row of a Mueller matrix are, however, very important in the description of polarimetric modulation, see the next section.

  10. 10.

    ​This description assumes that the entire Stokes vector is modulated. For a linear polarimeter or a circular polarimeter, the dimension of these matrices needs to be reduced to avoid singularities in the matrix inversion.

  11. 11.

    ​Note that this value is very close to the δ ≈ 127 required for equal modulation amplitudes in Q, U, and V.

  12. 12.

    ​Fortunately, the Earth’s atmosphere is not polarizing nor birefringent, although the presence of dust in the atmosphere does create small polarization signals (Hough 2007). Scattered (sun or moon) light can create a polarized sky background.

  13. 13.

    ​In the IR range, variable atmospheric transmission and background also play a role in this term t i .

  14. 14.

    ​This is an interesting finding by itself: this means that asymmetries in the solar shape, due to sunspots, and in the medium between the Sun and the Earth are very small indeed. This implies that the same is the case for similar stars and that detected polarization is solely due to interstellar absorption or circumstellar objects like exoplanets.

  15. 15.

    ​Even for solar observations at high spatial and spectral resolution!

  16. 16.

    ​For a description of the propagation of Gaussian noise to derived observables like the degree or angle of linear polarization, see Sparks and Axon (1999), Patat and Romaniello (2006) and chapter 5 of Clarke (2009).

  17. 17.

    ​The same is true for an increase in spectral resolution.

  18. 18.

    ​It is often sufficient to just have 90 point symmetry such that the polarizing and/or retardance properties of a part of some optical component is compensated with another, identical, crossed part of the same component. This can be the case for, e.g., a square aperture.

  19. 19.

    ​These are the directions perpendicular (“senkrecht” in German) and parallel to the reflection plane.

  20. 20.

    ​Note that solar telescopes are generally an order of magnitude smaller than nighttime telescopes, because of the enormous heat load in the prime focus

References

  • Antonucci, R. R. J., & Miller, J. S. 1985, ApJ, 297, 621

    Article  ADS  Google Scholar 

  • Bagnulo, S., Landolfi, M., Landstreet, J. D., Landi Degl’Innocenti, E., Fossati, L., & Sterzik, M. 2009, PASP, 121, 993

    Google Scholar 

  • Batcheldor, D., Schneider, G,; Hines, D. C., Schmidt, G. D., Axon, D. J., Robinson, A., Sparks, W., & Tadhunter, C. 2009, PASP, 121, 153

    Google Scholar 

  • Beckers, J. 1971, Appl Optics, 10, 973

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. 1946, ApJ, 104, 110

    Article  MathSciNet  ADS  Google Scholar 

  • Clarke, D. 2009, Stellar Polarimetry (Germany: Wiley-VCH)

    Book  Google Scholar 

  • del Toro Iniesta, J. C. 2003, Introduction to Spectropolarimetry (cambridge: Cambridge University Press)

    Google Scholar 

  • del Toro Iniesta, J. C., & Collados, M. 2000, Appl Optics, 39, 1637

    Article  ADS  Google Scholar 

  • de Wijn, A. G., Stenflo, J. O., Solanki, S. K., & Tsuneta, S. 2009, Space Sci Rev, 144, 275

    Article  ADS  Google Scholar 

  • Donati, J.-F., Catala, C., Landstreet, J. D., & Petit, P. 2006, in ASP Conf Ser 358, Solar Polarization 4, ed. R. Casini, & B. W. Lites (San Francisco: ASP), 362

    Google Scholar 

  • Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Collier Cameron, A. 1997, MNRAS, 291, 658

    Article  ADS  Google Scholar 

  • Donati, J.-F., and Landstreet, J. D. 2009, ARA&A, 47, 333

    Article  ADS  Google Scholar 

  • Gansel, J. K., Thiel, M., Rill, M. S., Decker, M., Bade, K., Saile, V., von Freymann, G., Linden, S., & Wegener, M. 2009, Science, 325, 1513

    Article  ADS  Google Scholar 

  • Guimond, S., & Elmore, D. 2004, OE Magazine, May edition

    Google Scholar 

  • Hale, G. E. 1908, ApJ, 28, 315

    Article  ADS  Google Scholar 

  • Hale, P. D., & Day, G. W. 1988, Appl Optics, 27, 5146

    Article  ADS  Google Scholar 

  • Hanle, W. 1924, Z Phys, 30, 93

    Article  ADS  Google Scholar 

  • Hansen, J. E., & Travis, L. D. 1974, Space Sci Rev, 16, 527

    Article  ADS  Google Scholar 

  • Harrington, D. M., & Kuhn, J. R. 2008, PASP, 120, 89

    Article  ADS  Google Scholar 

  • Hashimoto, J., Tamura, M., Muto, T., Kudo, T., Fukagawa, M., Fukue, T., Goto, M., Grady, C. A., Henning, T., Hodapp, K., Honda, M., Inutsuka, S., Kokubo, E., Knapp, G., McElwain, M. W., Momose, M., Ohashi, N., Okamoto, Y. K., Takami, M., Turner, E. L., Wisniewski, J., Janson, M., Abe, L., Brandner, W., Carson, J., Egner, S., Feldt, M., Golota, T., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S., Ishii, M., Kandori, R., Kusakabe, N., Matsuo, T., Mayama, S., Miyama, S., Morino, J.I., Moro-Martin, A., Nishimura, T., Pyo, T.S., Suto, H., Suzuki, R., Takato, N., Terada, H., Thalmann, C., Tomono, D., Watanabe, M., Yamada, T., Takami, H., & Usuda, T. 2011, ApJL, 729, L17

    Article  ADS  Google Scholar 

  • Heiles, C. 2000, ApJ, 119, 923

    ADS  Google Scholar 

  • Hough, J. H. 2007, JQRST, 106, 122

    Google Scholar 

  • Hough, J. H., Lucas, P. W., Bailey, J. A., Tamura, M., Hirst, E., Harrison, D., & Bartholomew-Biggs, M. 2006, PASP, 118, 1302

    Article  ADS  Google Scholar 

  • Hovenier. J. W., and Muños, O. 2009, JQSRT, 110, 1280

    Google Scholar 

  • Ichimoto, K., Lites, B., Elmore, D., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R., Tarbell, T., Title, A., Kiyohara, J., Shinoda, K., Card, G., Lecinski, A., Streander, K., Nakagiri, M., Miyashita, M., Noguchi, M., Hoffmann, C., & Cruz, T. 2008, Solar Phys, 249, 233

    Article  ADS  Google Scholar 

  • Ignace, R., Cassinelli, J. P., & Nordsieck, K. H. 1999, ApJ, 520, 335

    Article  ADS  Google Scholar 

  • Keller, C. U. 1996, Solar Phys, 164, 243

    Article  ADS  Google Scholar 

  • Keller, C. U. 2002a, in Astrophysical spectropolarimetry, ed. J. Trujillo-Bueno, F. Moreno-Insertis, & F. Snchez (Cambridge: Cambridge University Press), 303

    Google Scholar 

  • Keller, C. U. 2002b, ATST Technical Report #0007

    Google Scholar 

  • Keller, C. U., Harvey, J. W., & the SOLIS Team 2003, in ASP Conf Proc 307, Solar Polarization, ed. J. Trujillo-Bueno, & J. Sanchez Almeida (San Francisco: ASP), 13

    Google Scholar 

  • Keller, C. U. 2004, Proc SPIE, 5171, 239

    Article  ADS  Google Scholar 

  • Keller, C. U., & Snik, F. 2009, in ASP Conf Ser 405, Solar Polarization 5, ed. S. V. Berdyugina, K. N. Nagendra, & R. Ramelli (San Francisco: ASP), 371

    Google Scholar 

  • Keller, C. U., Schmidt, H. M., Venema, L. B., Canovas, H., Hanenburg, H. H., Jager, R., Jeffers, S. V., Kasper, M. E., Martinez, P., Min, M., Rigal, F., Rodenhuis, M., Roelfsema, R., Snik, F., Stam, D. M., Verinaud, C., & Yaitskova, N. 2010, Proc SPIE, 7735, 239

    Google Scholar 

  • Kemp, J. C., Swedlund, J. B., Landstreet, J. D., & Angel, J. R. P. 1970, ApJ 161, L77 (ApJL Homepage)

    Google Scholar 

  • Kemp, J. C., Henson, G. D., Steiner, C. T., & Powell, E. R. 1987, Nature, 326, 270

    Article  ADS  Google Scholar 

  • Kikuta, H., Ohira, Y., & Iwata, K. 1997, Appl Optics, 36, 1566

    Article  ADS  Google Scholar 

  • King, R. J. 1966, J Sci Instrum, 43, 617

    Article  ADS  Google Scholar 

  • Kochukhov, O., & Piskunov, N. 2009, in Proc IAU 259, Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, 653

    Google Scholar 

  • Kuhn, J. R., Potter, D., & Parise, B. 2001, ApJ, 553, L189

    Article  ADS  Google Scholar 

  • Kuhn, J. R., Berdyugina, S. V., Fluri, D. M., Harrington, D. M., & Stenflo, J. O. 2007, ApJ, 668, L63

    Article  ADS  Google Scholar 

  • Landi Degl’Innocenti, E., and del Toro Iniesta, J. C. 1998, JOSA A, 15, 533

    Google Scholar 

  • Landi Degli’Innocenti, E., and Landolfi, M. 2004, Polarization in Spectral Lines (Dordrecht: Kluwer)

    Google Scholar 

  • Lites, B. W. 1987, Appl Optics, 26, 3838

    Article  ADS  Google Scholar 

  • Lin, H., & Versteegh, A. 2006, Proc. SPIE, 6269, 62690K

    Article  ADS  Google Scholar 

  • Lu, S.-Y., and Chipman, R. A. 1996, JOSA A, 13, 1106

    Article  ADS  Google Scholar 

  • Nordsieck, K. H. 1974, PASP, 86, 324

    Article  ADS  Google Scholar 

  • Oka, K., & Kato, T. 1999, Optics Lett, 24, 1475

    Article  ADS  Google Scholar 

  • Oliva, E. 1997, A&AS, 123, 589

    Article  ADS  Google Scholar 

  • Oort, J. H., & Walraven, Th. 1956, Bull Astronomi Instit Netherlands, 12, 285

    ADS  Google Scholar 

  • Packham, C., & Jones, T. J. 2008, Proc. SPIE, 7014, 70145F

    Article  ADS  Google Scholar 

  • Packham, C., Escuti, M., Ginn, J., Oh, C., Quijano, I., & Boreman, G. 2010, PASP, 122, 1471

    Article  ADS  Google Scholar 

  • Pancharatnam, S. 1955, Proc Indian Acad Sci, Sect A, 42, 24

    Google Scholar 

  • Patat, F., & Romaniello, M. 2006, PASP, 118, 146

    Article  ADS  Google Scholar 

  • Perrin, M. D., Graham, J. R., Larkin, J. E., Wiktorowicz, S., Maire, J., Thibault, S., Doyon, R., Macintosh, B. A., Gavel, D. T., Oppenheimer, B. R., Palmer, D. W., Saddlemeyer, L., & Wallace, J. K. 2010, Proc SPIE, 7736, 218

    Google Scholar 

  • Povel, H. P., Keller, C. U., & Yadigaroglu, I.-A. 1994, Appl Optics, 33, 4254

    Article  ADS  Google Scholar 

  • Rodenhuis, M., Canovas, H., Jeffers, S. V., & Keller, C. U. 2008, Proc SPIE, 7014, 70146T

    Article  ADS  Google Scholar 

  • Sabatke, D. S., Descour, M. R., Dereniak, E. L., Sweatt, W. C., Kemme, S. A., & Phipps, G. S. 2000, Optics Lett, 25, 802

    Article  ADS  Google Scholar 

  • Samoylov, A. V., Samoylov, V. S., Vidmachenko, A. P., & Perekhod, A. V. 2004, JQSRT, 88, 319

    Article  ADS  Google Scholar 

  • Sánchez Almeida, J., & Martínez Pillet, V. 1992, A&A, 260, 543

    ADS  Google Scholar 

  • Seager, S., Whitney, B. A., & Sasselov, D. D. 2000, ApJ, 540, 504

    Article  ADS  Google Scholar 

  • Serkowski, K. 1974, Polarization Techniques Chapter 8 from Methods of Experimental Physics, 12, Astrophysics: Part A Optical & Infrared, ed. M. L. Meeks, & N. P. Carleton, (New York: Academic Press)

    Google Scholar 

  • Semel, M., Donati, J.-F., & Rees, D. E. 1993, A&A, 278, 231

    ADS  Google Scholar 

  • Semel, M. 1987, A&A, 178, 257

    ADS  Google Scholar 

  • Skumanich, A., Lites, B. W., Mart/’inez Pillet, V., & Seagraves, P. 1997, ApJ Suppl, 110, 357

    Google Scholar 

  • Slowikowska, A., Kanbach, G., Kramer, M., & Stefanescu, A. 2009, MNRAS, 397, 103

    Article  ADS  Google Scholar 

  • Snik, F. 2010, in ASP Conf. Ser. (in press), Astronomical Polarimetry 2008 - science from small to large telescopes, Ed. P. Bastien, (San Francisco: ASP)

    Google Scholar 

  • Snik, F. 2010, in ASP Conf Ser (in press), Astronomical Polarimetry 2008 - Science from Small to Large Telescopes, ed. P. Bastien, (San Francisco: ASP)

    Google Scholar 

  • Snik, F., Jeffers, S. V., Keller, C. U., Piskunov, N., Kochukhov, O., Valenti, J., & Johns-Krull, C. 2008, Proc. SPIE,7014, 70140O

    Google Scholar 

  • Snik, F. 2009, in ASP Conf. Ser. (in press), Astronomical Polarimetry 2008 - science from small to large telescopes, Ed. P. Bastien, (San Francisco: ASP)

    Google Scholar 

  • Snik, F., Karalidi, T., & Keller, C. U. 2009, Appl Optics, 48, 1337

    Article  ADS  Google Scholar 

  • Snik, F., van Harten, G, & Keller, C. U. 2011, PASP (submitted)

    Google Scholar 

  • Sparks, W. B., & Axon, D. J. 1999, PASP, 111, 1298

    Article  ADS  Google Scholar 

  • Sparks, W. B., Bond, H. E.; Cracraft, M., Levay, Z., Crause, L. A., Dopita, M. A., Henden, A. A., Munari, U., Panagia, N., Starrfield, S. G., Sugerman, B. E., Wagner, R. M., & White, R. L. 2008, AJ, 135, 605

    Article  ADS  Google Scholar 

  • Sparks, W. B., Hough, J. H., Kolokolova, L., Germer, T. A., Chen, F., DasSarma, S., DasSarma, P., Robb, F. T., Manset, N., Reid, I. N., Macchetto, F. D., & Martin, W. 2009, JQSRT, 110, 1771

    Article  ADS  Google Scholar 

  • Stam, D. M. 2008, A&A, 482, 989

    Article  ADS  Google Scholar 

  • Steele, I. A., Mundell, C. G., Smith, R. J., Kobayashi, S., & Guidorzi, C. 2009, Nature, 462, 767

    Article  ADS  Google Scholar 

  • Stenflo, J. O. 1994, Solar Magnetic Fields: Polarized Radiation Diagnostics (Dordrecht:Kluwer)

    Google Scholar 

  • Stokes, G. G. 1852, Trans Cambridge Phil Soc, 9, 399

    ADS  Google Scholar 

  • Thalmann, C., Schmid, H. M., Boccaletti, A., Mouillet, D., Dohlen, K., Roelfsema, R., Carbillet, M., Gisler, D., Beuzit, J.-L., Feldt, M., Gratton, R., Joos, F., Keller, C. U., Kragt, J., Pragt, J. H., Puget, P., Rigal, F., Snik, F., Waters, R., & Wildi, F. 2008, Proc SPIE, 7014, 70143F-70143F-12

    Google Scholar 

  • Tinbergen. J. 1996, Astronomical Polarimetry (Combridge: Cambridge University Press)

    Book  Google Scholar 

  • Tinbergen, J. 2007, PASP, 119, 1371

    Article  ADS  Google Scholar 

  • Tomczyk, S., Casini, R., de Wijn, A. G., & Nelson, P. G. 2010, Appl Optics, 49, 3580

    Article  ADS  Google Scholar 

  • Trujillo Bueno, J. 2009, in ASP Conf Ser 405, Solar Polarization 5, ed. S. V. Berdyugina, K. N. Nagendra, & R. Ramelli (San Francisco: ASP), 65

    Google Scholar 

  • Tyo, J. S., Goldstein, D. L., Chenault, D. B., & Shaw, J. A. 2006, Appl Optics, 45, 5453

    Article  ADS  Google Scholar 

  • van Harten, G., Snik, F., & Keller, C. U. 2009, PASP, 12, 377

    Article  Google Scholar 

  • Vink, J. 2010, Messenger, 140, 46

    ADS  Google Scholar 

  • Wang, L., and Wheeler, J. C. 2008, ARA&A, 46, 433

    Article  ADS  Google Scholar 

  • Weenink, J. G., Snik, F., & Keller, C. U. 2011, A&A (submitted)

    Google Scholar 

  • Whittet, D. C. B., Martin, P. G., Hough, J. H., Rouse, M. F., Bailey, J. A., & Axon, D. A. 1992, ApJ, 386, 562

    Article  ADS  Google Scholar 

  • Zeeman, P. 1897, Nature, 55, 347

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Snik, F., Keller, C.U. (2013). Astronomical Polarimetry: Polarized Views of Stars and Planets. In: Oswalt, T.D., Bond, H.E. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5618-2_4

Download citation

Publish with us

Policies and ethics