Skip to main content

Synaptic Remodeling and Neosynaptogenesis

  • Reference work entry
Book cover Handbook of the Cerebellum and Cerebellar Disorders

Abstract

This chapter describes axon-target interactions using the olivocerebellar path as a model, looking at the changes in synaptic contacts between climbing fibers and Purkinje cells in rodents, during developmental synapse formation, selective stabilization and synaptic re-formation during later stages of life. Neosynaptogenesis and recreation of the olivocerebellar circuit provides a model system for understanding how circuit reorganization after a lesion can be maximized for optimal repair. This model is used to examine how interactions between climbing fibers and Purkinje cells allow correct synaptic contacts to be established during development and post-lesion plasticity. This chapter also evaluates the relative importance of each synaptic partner, their maturation and prior synaptic experience, in determining the specificity of connections within a network. Developmental climbing fiber synapse formation and refinement is briefly described, then how the reformation of these contacts later in maturation is discussed, along with how these studies increase understanding of network development and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn S, Ginty DD, Linden DJ (1999) A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23:559–568

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972) Postnatal development of the cerebellar cortex in the rat II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–463

    Article  PubMed  CAS  Google Scholar 

  • Angaut P, Alvarado-Mallart RM, Sotelo C (1982) Ultrastructural evidence for compensatory sprouting of climbing and mossy afferents to the cerebellar hemisphere after ipsilateral pedunculotomy in the newborn rat. J Comp Neurol 205:101–111

    Article  PubMed  CAS  Google Scholar 

  • Angaut P, Alvarado-Mallart RM, Sotelo C (1985) Compensatory climbing fiber innervation after unilateral pedunculotomy in the newborn rat: origin and topographic organization. J Comp Neurol 236:161–178

    Article  PubMed  CAS  Google Scholar 

  • Baude A, Nusser Z, Roberts JD et al (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    Article  PubMed  CAS  Google Scholar 

  • Benedetti F, Montarolo PG, Strata P et al (1983) Collateral reinnervation in the olivocerebellar pathway in the rat. Birth Defects Orig Artic Ser 19:461–464

    PubMed  CAS  Google Scholar 

  • Bosman LW, Hartmann J, Barski JJ et al (2006) Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell Biol 35:87–101

    Article  PubMed  CAS  Google Scholar 

  • Bosman LW, Takechi H, Hartmann J et al (2008) Homosynaptic long-term synaptic potentiation of the “winner” climbing fiber synapse in developing Purkinje cells. J Neurosci 28:798–807

    Article  PubMed  CAS  Google Scholar 

  • Cathala L, Misra C, Cull-Candy S (2000) Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci 20:5899–5905

    PubMed  CAS  Google Scholar 

  • Cesa R, Strata P (2005) Axonal and synaptic remodeling in the mature cerebellar cortex. Prog Brain Res 148:45–56

    Article  PubMed  Google Scholar 

  • Cesa R, Morando L, Strata P (2005) Purkinje cell spinogenesis during architectural rewiring in the mature cerebellum. Eur J Neurosci 22:579–586

    Article  PubMed  Google Scholar 

  • Chedotal A, Sotelo C (1993) The “creeper stage” in cerebellar climbing fiber synaptogenesis precedes the “pericellular nest”–ultrastructural evidence with parvalbumin immunocytochemistry. Brain Res Dev Brain Res 76:207–220

    Article  PubMed  CAS  Google Scholar 

  • Chedotal A, Bloch-Gallego E, Sotelo C (1997) The embryonic cerebellum contains topographic cues that guide developing inferior olivary axons. Development 124:861–870

    PubMed  CAS  Google Scholar 

  • Crepel F (1971) Maturation of climbing fiber responses in the rat. Brain Res 35:272–276

    Article  PubMed  CAS  Google Scholar 

  • Crepel F, Mariani J, Delhaye-Bouchaud N (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol 7:567–578

    Article  PubMed  CAS  Google Scholar 

  • Crepel F, Delhaye-Bouchaud N, Dupont JL (1981) Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res 227:59–71

    PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Brickley SG, Misra C et al (1998) NMDA receptor diversity in the cerebellum: Identification of subunits contributing to functional receptors. Neuropharmacology 37:1369–1380

    Article  PubMed  CAS  Google Scholar 

  • Cunningham JJ, Sherrard RM, Bedi KS et al (1999) Changes in the numbers of neurons and astrocytes during the postnatal development of the rat inferior olive. J Comp Neurol 406:375–383

    Article  PubMed  CAS  Google Scholar 

  • Delhaye-Bouchaud N, Geoffroy B, Mariani J (1985) Neuronal death and synapse elimination in the olivocerebellar system I. Cell counts in the inferior olive of developing rats. J Comp Neurol 232:299–308

    Article  PubMed  CAS  Google Scholar 

  • Dixon KJ, Sherrard RM (2006) Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells. Exp Neurol 202:44–56

    Article  PubMed  CAS  Google Scholar 

  • Dixon KJ, Hilber W, Speare S et al (2005) Post-lesion transcommissural olivocerebellar reinnervation improves motor function following unilateral pedunculotomy in the neonatal rat. Exp Neurol 196:254–265

    Article  PubMed  Google Scholar 

  • Doughty ML, Lohof A, Campana A et al (1998) Neurotrophin-3 promotes cerebellar granule cell exit from the EGL. Eur J Neurosci 10:3007–3011

    Article  PubMed  CAS  Google Scholar 

  • Dupont JL, Gardette R, Crepel F (1987) Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study. Brain Res 431:59–68

    PubMed  CAS  Google Scholar 

  • Fernandez AM, de la Vega AG, Torres-Aleman I (1998) Insulin-like growth factor i restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci USA 95:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Gardette R, Crepel F, Alvarado-Mallart RM et al (1990) Fate of grafted embryonic Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration” mutant mouse. II. Development of synaptic responses: an in vitro study. J Comp Neurol 295:188–196

    Article  PubMed  CAS  Google Scholar 

  • Goossens J, Daniel H, Rancillac A et al (2001) Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci 21:5813–5823

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Kano M (2003) Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron 38:785–796

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Kano M (2005) Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci Res 53:221–228

    Article  PubMed  Google Scholar 

  • Hashimoto K, Watanabe M, Kurihara H et al (2000) Climbing fiber synapse elimination during postnatal cerebellar development requires signal transduction involving G alpha q and phospholipase C beta 4. Prog Brain Res 124:31–48

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Ichikawa R, Takechi H et al (2001) Roles of glutamate receptor delta 2 subunit (GluRdelta 2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci 21:9701–9712

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Ichikawa R, Kitamura K et al (2009) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers“ from the soma in developing cerebellum. Neuron 63:106–118

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Tsujita M, Miyazaki T et al (2011) Postsynaptic P/Q-type Ca2+ channel in Purkinje cell mediates synaptic competition and elimination in developing cerebellum. Proc Natl Acad Sci USA 108:9987–9992

    Article  PubMed  CAS  Google Scholar 

  • Hess BJ, Savio T, Strata P (1988) Dynamic characteristics of optokinetically controlled eye movements following inferior olive lesions in the brown rat. J Physiol 397:349–370

    PubMed  CAS  Google Scholar 

  • Hirai H, Pang Z, Bao D et al (2005) Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • Ichise T, Kano M, Hashimoto K et al (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288:1832–1835

    Article  PubMed  CAS  Google Scholar 

  • Kakizawa S, Yamasaki M, Watanabe M et al (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20:4954–4961

    PubMed  CAS  Google Scholar 

  • Kano M, Hashimoto K, Chen C et al (1995) Impaired synapse elimination during cerebellar development in PKC gamma mutant mice. Cell 83:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Kurihara H, Hashimoto K, Kano M et al (1997) Impaired parallel fiber –> Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor delta2 subunit. J Neurosci 17:9613–9623

    PubMed  CAS  Google Scholar 

  • Lalouette A, Lohof A, Sotelo C et al (2001) Neurobiological effects of a null mutation depend on genetic context: Comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105:443–455

    Article  PubMed  CAS  Google Scholar 

  • Letellier M, Bailly Y, Demais V et al (2007) Reinnervation of late postnatal Purkinje cells by climbing fibers: neosynaptogenesis without transient multi-innervation. J Neurosci 27:5373–5383

    Article  PubMed  CAS  Google Scholar 

  • Letellier M, Wehrle R, Mariani J et al (2009) Synapse elimination in olivo-cerebellar explants occurs during a critical period and leaves an indelible trace in Purkinje cells. Proc Natl Acad Sci USA 106:14102–14107

    PubMed  Google Scholar 

  • Lichtman JW, Colman H (2000) Synapse elimination and indelible memory. Neuron 25:269–278

    Article  PubMed  CAS  Google Scholar 

  • Lohof AM, Mariani J, Sherrard RM (2005) Afferent-target interactions during olivocerebellar development: Transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination. Eur J Neurosci 22:2681–2688

    Article  PubMed  Google Scholar 

  • Lomeli H, Sprengel R, Laurie DJ et al (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315:318–322

    Article  PubMed  CAS  Google Scholar 

  • Mariani J (1982) Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. J Neurobiol 13:119–126

    Article  PubMed  CAS  Google Scholar 

  • Mariani J (1983) Elimination of synapses during the development of the central nervous system. Prog Brain Res 58:383–392

    Article  PubMed  CAS  Google Scholar 

  • Mariani J, Changeux JP (1981) Ontogenesis of olivocerebellar relationships. I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the developing rat cerebellum. J Neurosci 1:696–702

    PubMed  CAS  Google Scholar 

  • Mariani J, Benoit P, Hoang MD et al (1990) Extent of multiple innervation of cerebellar Purkinje cells by climbing fibers in adult X-irradiated rats. Comparison of different schedules of irradiation during the first postnatal week. Brain Res Dev Brain Res 57:63–70

    Article  PubMed  CAS  Google Scholar 

  • Mason CA, Christakos S, Catalano SM (1990) Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. J Comp Neurol 297:77–90

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Yuzaki M (2010) Cbln1 and the Delta2 glutamate receptor-an orphan ligand and an orphan receptor find their partners. Cerebellum, DOI:10.1007/s12311-010-0186-5

    Google Scholar 

  • Miyazaki T, Hashimoto K, Shin HS et al (2004) P/Q-type Ca2+ channel alpha1A regulates synaptic competition on developing cerebellar Purkinje cells. J Neurosci 24:1734–1743

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki T, Yamasaki M, Takeuchi T et al (2010) Ablation of glutamate receptor GluRdelta2 in adult Purkinje cells causes multiple innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory. J Neurosci 30:15196–15209

    Article  PubMed  CAS  Google Scholar 

  • Montarolo PG, Palestini M, Strata P (1982) The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J Physiol 332:187–202

    PubMed  CAS  Google Scholar 

  • Morara S, van der Want JJ, de Weerd H et al (2001) Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience 108:655–671

    Article  PubMed  CAS  Google Scholar 

  • Neppi-Modona M, Rossi F, Strata P (1999) Phenotype changes of inferior olive neurons following collateral reinnervation. Neuroscience 94:209–215

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki G, Hirano T (2008) Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses. Eur J Neurosci 28:2393–2400

    Article  PubMed  Google Scholar 

  • Piochon C, Irinopoulou T, Brusciano D et al (2007) NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. J Neurosci 27:10797–10809

    Article  PubMed  CAS  Google Scholar 

  • Rabacchi S, Bailly Y, Delhaye-Bouchaud N et al (1992a) Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256:1823–1825

    Article  PubMed  CAS  Google Scholar 

  • Rabacchi SA, Bailly Y, Delhaye-Bouchaud N et al (1992b) Role of the target in synapse elimination: Studies in cerebellum of developing lurcher mutants and adult chimeric mice. J Neurosci 12:4712–4720

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1911) Histologie du système nerveux de l'homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Renzi M, Farrant M, Cull-Candy SG (2007) Climbing-fibre activation of NMDA receptors in Purkinje cells of adult mice. J Physiol 585:91–101

    Article  PubMed  CAS  Google Scholar 

  • Ribar TJ, Rodriguiz RM, Khiroug L et al (2000) Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice. J Neurosci 20(22):RC107

    PubMed  CAS  Google Scholar 

  • Rossi F, Strata P (1995) Reciprocal trophic interactions in the adult climbing fibre-Purkinje cell system. Prog Neurobiol 47:341–369

    PubMed  CAS  Google Scholar 

  • Rossi F, van der Want JJ, Wiklund L et al (1991a) Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II. Synaptic organization on reinnervated Purkinje cells. J Comp Neurol 308:536–554

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Wiklund L, van der Want JJ et al (1991b) Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses. J Comp Neurol 308:513–535

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Borsello T, Strata P (1994) Embryonic Purkinje cells grafted on the surface of the adult uninjured rat cerebellum migrate in the host parenchyma and induce sprouting of intact climbing fibres. Eur J Neurosci 6:121–136

    Article  PubMed  CAS  Google Scholar 

  • Rubin BP, Dusart I, Schwab ME (1994) A monoclonal antibody (IN-1) which neutralizes neurite growth inhibitory proteins in the rat CNS recognizes antigens localized in CNS myelin. J Neurocytol 23:209–217

    Article  PubMed  CAS  Google Scholar 

  • Ruthazer ES, Akerman CJ, Cline HT (2003) Control of axon branch dynamics by correlated activity in vivo. Science 301:66–70

    Article  PubMed  CAS  Google Scholar 

  • Scelfo B, Strata P, Knopfel T (2003) Sodium imaging of climbing fiber innervation fields in developing mouse Purkinje cells. J Neurophysiol 89:2555–2563

    Article  PubMed  Google Scholar 

  • Sherrard RM, Bower AJ (2001) BDNF and NT3 extend the critical period for developmental climbing fibre plasticity. Neuroreport 12:2871–2874

    Article  PubMed  CAS  Google Scholar 

  • Sherrard RM, Bower AJ, Payne JN (1986) Innervation of the adult rat cerebellar hemisphere by fibres from the ipsilateral inferior olive following unilateral neonatal pedunculotomy: an autoradiographic and retrograde fluorescent double-labelling study. Exp Brain Res 62:411–421

    Article  PubMed  CAS  Google Scholar 

  • Sherrard RM, Dixon KJ, Bakouche J et al (2009) Differential expression of TrkB isoforms switches climbing fiber-Purkinje cell synaptogenesis to selective synapse elimination. Dev Neurobiol 69:647–662

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C, Hillman DE, Zamora AJ et al (1975) Climbing fiber deafferentation: Its action on Purkinje cell dendritic spines. Brain Res 98:574–581

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I (2005) Microzonal projection and climbing fiber remodeling in single olivocerebellar axons of newborn rats at postnatal days 4–7. J Comp Neurol 487:93–106

    Article  PubMed  Google Scholar 

  • Sugihara I, Wu HS, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21:7715–7723

    PubMed  CAS  Google Scholar 

  • Sugihara I, Lohof AM, Letellier M et al (2003) Post-lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones. Eur J Neurosci 18:3027–3036

    Article  PubMed  Google Scholar 

  • Takeuchi T, Miyazaki T, Watanabe M et al (2005) Control of synaptic connection by glutamate receptor delta2 in the adult cerebellum. J Neurosci 25:2146–2156

    Article  PubMed  CAS  Google Scholar 

  • Tempia F, Bravin M, Strata P (1996) Postsynaptic currents and short-term synaptic plasticity in Purkinje cells grafted onto an uninjured adult cerebellar cortex. Eur J Neurosci 8:2690–2701

    Article  PubMed  CAS  Google Scholar 

  • Tohgo A, Eiraku M, Miyazaki T et al (2006) Impaired cerebellar functions in mutant mice lacking DNER. Mol Cell Neurosci 31:326–333

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Kakizawa S, Yamasaki M et al (2007) Regulation of long-term depression and climbing fiber territory by glutamate receptor delta2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells. J Neurosci 27:12096–12108

    Article  PubMed  CAS  Google Scholar 

  • Usowicz MM, Sugimori M, Cherksey B et al (1992) P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 9:1185–1199

    Article  PubMed  CAS  Google Scholar 

  • Voneida TJ, Christie D, Bogdanski R et al (1990) Changes in instrumentally and classically conditioned limb-flexion responses following inferior olivary lesions and olivocerebellar tractotomy in the cat. J Neurosci 10:3583–3593

    PubMed  CAS  Google Scholar 

  • Watanabe F, Miyazaki T, Takeuchi T et al (2008) Effects of FAK ablation on cerebellar foliation, Bergmann glia positioning and climbing fiber territory on Purkinje cells. Eur J Neurosci 27:836–854

    Article  PubMed  Google Scholar 

  • Willson ML, Bower AJ, Sherrard RM (2007) Developmental neural plasticity and its cognitive benefits: Olivocerebellar reinnervation compensates for spatial function in the cerebellum. Eur J Neurosci 25:1475–1483

    Article  PubMed  Google Scholar 

  • Willson ML, McElnea C, Mariani J et al (2008) BDNF increases homotypic olivocerebellar reinnervation and associated fine motor and cognitive skill. Brain 131:1099–1112

    Article  PubMed  Google Scholar 

  • Zagrebelsky M, Rossi F, Hawkes R et al (1996) Topographically organized climbing fibre sprouting in the adult rat cerebellum. Eur J Neurosci 8:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Zagrebelsky M, Strata P, Hawkes R et al (1997) Reestablishment of the olivocerebellar projection map by compensatory transcommissural reinnervation following unilateral transection of the inferior cerebellar peduncle in the newborn rat. J Comp Neurol 379:283–299

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, De Jager PL, Takahashi KA et al (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388:769–773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Lohof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lohof, A.M., Letellier, M., Mariani, J., Sherrard, R.M. (2013). Synaptic Remodeling and Neosynaptogenesis. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_13

Download citation

Publish with us

Policies and ethics