Skip to main content

Development of Cerebellar Nuclei

  • Reference work entry

Abstract

The cerebellum is a foliated structure consisting of the laminated cerebellar cortex and a paired set of bilateral cerebellar nuclei (CN) located in the deep white matter adjacent to the roof of the fourth ventricle. The CN are comprised of multiple neuron types including large glutamatergic projection neurons, GABAergic projection neurons, and small GABAergic interneurons. Hodologically, CN receive afferent projections from Purkinje cells, and give rise to major cerebellar output tracts. The developmental origins of CN have long been debated, although the consensus of evidence now indicates that different GABAergic (inhibitory) and glutamatergic (excitatory) neuronal populations are derived by sequential neurogenesis from distinct progenitor compartments. Each type of neuronal population is born at different times and follows a unique migratory route. The molecular mechanisms regulating CN neurogenesis, cellular migration, and axonal guidance of the efferent pathways are now being elucidated. This chapter highlights recent advances in embryonic cerebellar development, focusing on the development of CN and their connections, and on molecular mechanisms underlying their development. Mouse mutant phenotypes involving the CN, as well as human malformations affecting CN morphology, illustrate the importance of CN in cerebellar function and pathology.

This is a preview of subscription content, log in via an institution.

References

  • Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386(6627):838–842

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179(1):23–48

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1985a) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231(1):1–26

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1985b) Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J Comp Neurol 231(1):27–41

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1985c) Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231(1):42–65

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CL, Hawkes R (2000) Pattern formation in the cerebellar cortex. Biochem Cell Biol 78(5):551–562

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Schild RF (1978a) An investigation of the cerebellar cortico-nuclear projections in the rat using an autoradiographic tracing method. I. Projections from the vermis. Brain Res 141(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Schild RF (1978b) An investigation of the cerebellar corticonuclear projections in the rat using an autoradiographic tracing method. II. Projections from the hemisphere. Brain Res 141(2):235–249

    Article  PubMed  CAS  Google Scholar 

  • Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29(32):10104–10110

    Article  PubMed  CAS  Google Scholar 

  • Barth PG, Aronica E, de Vries L, Nikkels PG, Scheper W, Hoozemans JJ, Poll-The BT, Troost D (2007) Pontocerebellar hypoplasia type 2: a neuropathological update. Acta Neuropathol 114(4):373–386

    Article  PubMed  Google Scholar 

  • Bastianelli E (2003) Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2(4):242–262

    Article  PubMed  CAS  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390(6656):169–172

    Article  PubMed  CAS  Google Scholar 

  • Bloch-Gallego E, Ezan F, Tessier-Lavigne M, Sotelo C (1999) Floor plate and netrin-1 are involved in the migration and survival of inferior olivary neurons. J Neurosci 19(11):4407–4420

    PubMed  CAS  Google Scholar 

  • Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14(1):91–100

    Article  PubMed  Google Scholar 

  • Causeret F, Danne F, Ezan F, Sotelo C, Bloch-Gallego E (2002) Slit antagonizes netrin-1 attractive effects during the migration of inferior olivary neurons. Dev Biol 246(2):429–440

    Article  PubMed  CAS  Google Scholar 

  • Chang AC, Ghetti B (1993) Embryonic cerebellar graft development during acute phase of gliosis in the cerebellum of pcd mutant mice. Chin J Physiol 36(3):141–149

    PubMed  CAS  Google Scholar 

  • Chan-Palay V (1977) Cerebellar dentate nucleus. organization, cytology and transmitters. JNEN 36(6):978

    Google Scholar 

  • Chemli J, Abroug M, Tlili K, Harbi A (2007) Rhombencephalosynapsis diagnosed in childhood: clinical and MRI findings. Eur J Paediatr Neurol 11(1):35–38

    Article  PubMed  Google Scholar 

  • Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133(15):2793–2804

    Article  PubMed  CAS  Google Scholar 

  • Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci USA 107(23):10725–10730

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Zhang Y, Van Der Hoorn F, Hawkes R (2007) The anatomy of the cerebellar nuclei in the normal and scrambler mouse as revealed by the expression of the microtubule-associated protein kinesin light chain 3. Brain Res 1140:120–131

    Article  PubMed  CAS  Google Scholar 

  • Chung SH, Marzban H, Hawkes R (2009) Compartmentation of the cerebellar nuclei of the mouse. Neuroscience 161(1):123–138

    Article  PubMed  CAS  Google Scholar 

  • de Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333

    Article  PubMed  Google Scholar 

  • Doherty D (2009) Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 16(3):143–154

    Article  PubMed  Google Scholar 

  • Engelkamp D, Rashbass P, Seawright A, van Heyningen V (1999) Role of Pax6 in development of the cerebellar system. Development 126(16):3585–3596

    PubMed  CAS  Google Scholar 

  • Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26(36):9184–9195

    Article  PubMed  CAS  Google Scholar 

  • Fatemi (2008) Reelin glycoprotein. In: Rober H Hevner (ed) Reelin and the cerebellum. Springer, New York, pp 141–158

    Google Scholar 

  • Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26(11):3066–3076

    Article  PubMed  CAS  Google Scholar 

  • Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. Anat Embryol (Berl) 184(3):225–243

    Article  CAS  Google Scholar 

  • Friede RL, Boltshauser E (1978) Uncommon syndromes of cerebellar vermis aplasia. I: Joubert syndrome. Dev Med Child Neurol 20(6):758–763

    Article  PubMed  CAS  Google Scholar 

  • Gardner RJ, Coleman LT, Mitchell LA, Smith LJ, Harvey AS, Scheffer IE, Storey E, Nowotny MJ, Sloane RA, Lubitz L (2001) Near-total absence of the cerebellum. Neuropediatrics 32(2):62–68

    Article  PubMed  CAS  Google Scholar 

  • Goffinet AM (1983) The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol (Berl) 168(1):73–86

    Article  CAS  Google Scholar 

  • Goffinet AM, So KF, Yamamoto M, Edwards M, Caviness VS Jr (1984) Architectonic and hodological organization of the cerebellum in reeler mutant mice. Brain Res 318(2):263–276

    PubMed  CAS  Google Scholar 

  • Graham JM Jr, Spencer AH, Grinberg I, Niesen CE, Platt LD, Maya M, Namavar Y, Baas F, Dobyns WB (2010) Molecular and neuroimaging findings in pontocerebellar hypoplasia type 2 (PCH2): is prenatal diagnosis possible? Am J Med Genet A 152A(9):2268–2276

    Article  PubMed  CAS  Google Scholar 

  • Gudovic R, Marinkovic R, Aleksic S (1987) The development of the dentate nucleus in man. Anat Anz 163(3):233–238

    PubMed  CAS  Google Scholar 

  • Haines DE, May PJ, Dietrichs E (1990) Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol 299(1):106–122

    Article  PubMed  CAS  Google Scholar 

  • Hayaran A, Wadhwa S, Bijlani V (1992a) Cytoarchitectural development of the human dentate nucleus: a Golgi study. Dev Neurosci 14(3):181–194

    Article  PubMed  CAS  Google Scholar 

  • Hayaran A, Wadhwa S, Gopinath G, Bijlani V (1992b) Developing dentate nucleus in man: a qualitative and quantitative study. Exp Brain Res 89(3):640–648

    Article  PubMed  CAS  Google Scholar 

  • Helms AW, Gowan K, Abney A, Savage T, Johnson JE (2001) Overexpression of MATH1 disrupts the coordination of neural differentiation in cerebellum development. Mol Cell Neurosci 17(4):671–682

    Article  PubMed  CAS  Google Scholar 

  • Hevner RF (2005) The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol 110(3):208–221

    Article  PubMed  Google Scholar 

  • Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233

    Article  PubMed  CAS  Google Scholar 

  • Ho KL, Chang CH, Yang SS, Chason JL (1984) Neuropathologic findings in thanatophoric dysplasia. Acta Neuropathol 63(3):218–228

    Article  PubMed  CAS  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47(2):201–213

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Iwata T, Hevner RF (2009) Fibroblast growth factor signaling in development of the cerebral cortex. Dev Growth Differ 51(3):299–323

    Article  PubMed  CAS  Google Scholar 

  • Jaarsma D, Ruigrok TJ, Caffe R, Cozzari C, Levey AI, Mugnaini E, Voogd J (1997) Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 114:67–96

    Article  PubMed  CAS  Google Scholar 

  • Jaeken J, Casaer P (1997) Carbohydrate-deficient glycoconjugate (CDG) syndromes: a new chapter of neuropaediatrics. Eur J Paediatr Neurol 1(2–3):61–66

    Article  PubMed  CAS  Google Scholar 

  • Jankovski A, Rossi F, Sotelo C (1996) Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations. Eur J Neurosci 8(11):2308–2319

    Article  PubMed  CAS  Google Scholar 

  • Joubert M, Eisenring JJ, Robb JP, Andermann F (1969) Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 19(9):813–825

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Ackerman SL (2011) The UNC5C netrin receptor regulates dorsal guidance of mouse hindbrain axons. J Neurosci 31(6):2167–2179

    Article  PubMed  CAS  Google Scholar 

  • Korneliussen HK (1967) Cerebellar corticogenesis in Cetaca, with special reference to regional variations. J Hirnforsch 9(2):151–185

    PubMed  CAS  Google Scholar 

  • Korneliussen HK (1968) On the morphology and subdivision of the cerebellar nuclei of the rat. J Hirnforsch 10(2):109–122

    PubMed  CAS  Google Scholar 

  • Kruer MC, Blasco PA, Anderson JC, Bardo DM, Pinter JD (2009) Truncal ataxia, hypotonia, and motor delay with isolated rhombencephalosynapsis. Pediatr Neurol 41(3):229–231

    Article  PubMed  Google Scholar 

  • La Malfa G, Lassi S, Bertelli M, Salvini R, Placidi GF (2004) Autism and intellectual disability: a study of prevalence on a sample of the Italian population. J Intellect Disabil Res 48(Pt 3):262–267

    Article  PubMed  Google Scholar 

  • Langer LO Jr, Yang SS, Hall JG, Sommer A, Kottamasu SR, Golabi M, Krassikoff N (1987) Thanatophoric dysplasia and cloverleaf skull. Am J Med Genet Suppl 3:167–179

    Article  PubMed  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100(4):443–454

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Carletti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26(45):11682–11694

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, Rossi F (2009) Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci 29(21):7079–7091

    Article  PubMed  CAS  Google Scholar 

  • Limperopoulos C, du Plessis AJ (2006) Disorders of cerebellar growth and development. Curr Opin Pediatr 18(6):621–627

    Article  PubMed  Google Scholar 

  • Louvi A, Alexandre P, Metin C, Wurst W, Wassef M (2003) The isthmic neuroepithelium is essential for cerebellar midline fusion. Development 130(22):5319–5330

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95(16):9448–9453

    Article  PubMed  CAS  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48(1):17–24

    Article  PubMed  CAS  Google Scholar 

  • Malcolm B, Carpenter AB (1978) Core text of neuroanatomy, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Maria BL, Quisling RG, Rosainz LC, Yachnis AT, Gitten J, Dede D, Fennell E (1999) Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol 14(6):368–376

    Article  PubMed  CAS  Google Scholar 

  • Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41(2):281–294

    Article  PubMed  CAS  Google Scholar 

  • Maricich SM, Soha J, Trenkner E, Herrup K (1997) Failed cell migration and death of purkinje cells and deep nuclear neurons in the weaver cerebellum. J Neurosci 17(10):3675–3683

    PubMed  CAS  Google Scholar 

  • Marti J, Wills KV, Ghetti B, Bayer SA (2001) Evidence that the loss of Purkinje cells and deep cerebellar nuclei neurons in homozygous weaver is not related to neurogenetic patterns. Int J Dev Neurosci 19(6):599–610

    Article  PubMed  CAS  Google Scholar 

  • Martin GF, Henkel CK, King JS (1976) Cerebello-olivary fibers: their origin, course and distribution in the North American opossum. Exp Brain Res 24:219–236

    Article  PubMed  CAS  Google Scholar 

  • Matano S (2001) Brief communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. Am J Phys Anthropol 114(2):163–165

    Article  PubMed  CAS  Google Scholar 

  • Mathis L, Nicolas JF (2003) Progressive restriction of cell fates in relation to neuroepithelial cell mingling in the mouse cerebellum. Dev Biol 258(1):20–31

    Article  PubMed  CAS  Google Scholar 

  • Mathis L, Bonnerot C, Puelles L, Nicolas JF (1997) Retrospective clonal analysis of the cerebellum using genetic laacZ/lacZ mouse mosaics. Development 124(20):4089–4104

    PubMed  CAS  Google Scholar 

  • McErlean A, Abdalla K, Donoghue V, Ryan S (2010) The dentate nucleus in children: normal development and patterns of disease. Pediatr Radiol 40(3):326–339

    Article  PubMed  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    Article  PubMed  CAS  Google Scholar 

  • Mihajlovic P, Zecevic N (1986) Development of the human dentate nucleus. Hum Neurobiol 5(3):189–197

    PubMed  CAS  Google Scholar 

  • Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18(1):12–19

    Article  PubMed  CAS  Google Scholar 

  • Miller E, Blaser S, Shannon P, Widjaja E (2009) Brain and bone abnormalities of thanatophoric dwarfism. AJR Am J Roentgenol 192(1):48–51

    Article  PubMed  Google Scholar 

  • Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13(13):1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Morales D, Hatten ME (2006) Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci 26(47):12226–12236

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini EOWH (1985) GABAergic neurons and terminals in the rat CNS as revealed by GAD immuno-histochemistry. In: GABA and neuropeptides in teh CNS: the handbook of chemical neuroanatomy part I. Elsevier, Amsterdam, pp 541–543

    Google Scholar 

  • Namavar Y, Barth PG, Kasher PR, van Ruissen F, Brockmann K, Bernert G, Writzl K, Ventura K, Cheng EY, Ferriero DM et al (2011) Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 134(Pt 1):143–156

    Article  PubMed  Google Scholar 

  • Palmen SJ, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127(Pt 12):2572–2583

    Article  PubMed  Google Scholar 

  • Parisi MA (2009) Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet 151C(4):326–340

    Article  PubMed  CAS  Google Scholar 

  • Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80(1–2):36–53

    Article  PubMed  CAS  Google Scholar 

  • Parisi MA, Doherty D, Chance PF, Glass IA (2007) Joubert syndrome (and related disorders) (OMIM 213300). Eur J Hum Genet 15(5):511–521

    Article  PubMed  CAS  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104(12):5193–5198

    Article  PubMed  CAS  Google Scholar 

  • Pasquier L, Marcorelles P, Loget P, Pelluard F, Carles D, Perez MJ, Bendavid C, de La Rochebrochard C, Ferry M, David V et al (2009) Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol 117(2):185–200

    Article  PubMed  Google Scholar 

  • Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol 23(7):1074–1087

    PubMed  Google Scholar 

  • Patel MS, Becker LE, Toi A, Armstrong DL, Chitayat D (2006) Severe, fetal-onset form of olivopontocerebellar hypoplasia in three sibs: PCH type 5? Am J Med Genet A 140(6):594–603

    PubMed  Google Scholar 

  • Pierce ET (1975) Histogenesis of the deep cerebellar nuclei in the mouse: an autoradiagraphic study. Brain Res 95:503–518

    Article  PubMed  CAS  Google Scholar 

  • Ramaekers VT, Heimann G, Reul J, Thron A, Jaeken J (1997) Genetic disorders and cerebellar structural abnormalities in childhood. Brain 120(Pt 10):1739–1751

    Article  PubMed  Google Scholar 

  • Rankin J, Brown R, Dobyns WB, Harington J, Patel J, Quinn M, Brown G (2010) Pontocerebellar hypoplasia type 6: a British case with PEHO-like features. Am J Med Genet A 152A(8):2079–2084

    Article  PubMed  CAS  Google Scholar 

  • Reiss K, Mentlein R, Sievers J, Hartmann D (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115(1):295–305

    Article  PubMed  CAS  Google Scholar 

  • Renbaum P, Kellerman E, Jaron R, Geiger D, Segel R, Lee M, King MC, Levy-Lahad E (2009) Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet 85(2):281–289

    Article  PubMed  CAS  Google Scholar 

  • Rice DS, Nusinowitz S, Azimi AM, Martinez A, Soriano E, Curran T (2001) The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron 31(6):929–941

    Article  PubMed  CAS  Google Scholar 

  • Ruigrok TJ (1997) Cerebellar nuclei: the olivary connection. Prog Brain Res 114:167–192

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4(3):174–198

    Article  PubMed  CAS  Google Scholar 

  • Sekerkova G, Ilijic E, Mugnaini E (2004) Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling. Neuroscience 127(4):845–858

    Article  PubMed  CAS  Google Scholar 

  • Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36(12):1301–1305

    Article  PubMed  CAS  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45(1):27–40

    PubMed  CAS  Google Scholar 

  • Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72(5):295–339

    Article  PubMed  CAS  Google Scholar 

  • Tamada A, Kumada T, Zhu Y, Matsumoto T, Hatanaka Y, Muguruma K, Chen Z, Tanabe Y, Torigoe M, Yamauchi K et al (2008) Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing. Neural Dev 3:29

    Article  PubMed  CAS  Google Scholar 

  • Tissir F, Wang CE, Goffinet AM (2004) Expression of the chemokine receptor Cxcr4 mRNA during mouse brain development. Brain Res Dev Brain Res 149(1):63–71

    Article  PubMed  CAS  Google Scholar 

  • Toelle SP, Yalcinkaya C, Kocer N, Deonna T, Overweg-Plandsoen WC, Bast T, Kalmanchey R, Barsi P, Schneider JF, Capone Mori A et al (2002) Rhombencephalosynapsis: clinical findings and neuroimaging in 9 children. Neuropediatrics 33(4):209–214

    Article  PubMed  CAS  Google Scholar 

  • Triarhou LC, Norton J, Ghetti B (1987) Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice. Exp Brain Res 66(3):577–588

    Article  PubMed  CAS  Google Scholar 

  • Truwit CL, Barkovich AJ, Shanahan R, Maroldo TV (1991) MR imaging of rhombencephalosynapsis: report of three cases and review of the literature. AJNR Am J Neuroradiol 12(5):957–965

    PubMed  CAS  Google Scholar 

  • Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushima T, Okazaki M (1998) Rhombencephalosynapsis: cerebellar embryogenesis. AJNR Am J Neuroradiol 19(3):547–549

    PubMed  CAS  Google Scholar 

  • Uusisaari M, Knopfel T (2008) GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience 156(3):537–549

    Article  PubMed  CAS  Google Scholar 

  • Uusisaari M, Knopfel T (2010) GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum 9(1):42–55

    Article  PubMed  Google Scholar 

  • Uusisaari M, Obata K, Knopfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97(1):901–911

    Article  PubMed  CAS  Google Scholar 

  • Voogd J (1995) Cerebellum. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 309–350

    Google Scholar 

  • Wang T, Morgan JI (2007) The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res 1140:26–40

    Article  PubMed  CAS  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48(1):31–43

    Article  PubMed  CAS  Google Scholar 

  • Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, Chauhan A, Chauhan V, Bobrowicz TW, de Leon M et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119(6):755–770

    Article  PubMed  Google Scholar 

  • Weisheit G, Gliem M, Endl E, Pfeffer PL, Busslinger M, Schilling K (2006) Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur J Neurosci 24(2):466–478

    Article  PubMed  Google Scholar 

  • Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73(3):400–409

    Article  PubMed  CAS  Google Scholar 

  • Wingate RJ (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11(1):82–88

    Article  PubMed  CAS  Google Scholar 

  • Wingate R (2005) Math-Map(ic)s. Neuron 48(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Yachnis AT (2002) Rhombencephalosynapsis with massive hydrocephalus: case report and pathogenetic considerations. Acta Neuropathol 103(3):301–304

    Article  PubMed  Google Scholar 

  • Yachnis AT, Rorke LB (1999) Cerebellar and brainstem development: an overview in relation to Joubert syndrome. J Child Neurol 14(9):570–573

    Article  PubMed  CAS  Google Scholar 

  • Yachnis AT, Rorke LB, Lee VM, Trojanowski JQ (1993) Expression of neuronal and glial polypeptides during histogenesis of the human cerebellar cortex including observations on the dentate nucleus. J Comp Neurol 334(3):356–369

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Goto N, Yamamoto TY (1989) Development of human cerebellar nuclei. Morphometric study. Acta Anat (Basel) 136(1):61–68

    Article  CAS  Google Scholar 

  • Zhang L, Goldman JE (1996) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16(1):47–54

    Article  PubMed  Google Scholar 

  • Zhu Y, Yu T, Zhang XC, Nagasawa T, Wu JY, Rao Y (2002) Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci 5(8):719–720

    PubMed  CAS  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina E. Elsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Elsen, G.E., Juric-Sekhar, G., Daza, R.A.M., Hevner, R.F. (2013). Development of Cerebellar Nuclei. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_10

Download citation

Publish with us

Policies and ethics