Skip to main content

Molecular Structure and Vibrational Spectra

  • Reference work entry
  • First Online:
Book cover Handbook of Computational Chemistry

Abstract

This chapter deals with two very important aspects of modern ab initio computational chemistry: the determination of molecular structure and the calculation, and visualization, of vibrational spectra. It deals primarily with the practical aspects of determining molecular structure and vibrational spectra computationally. Both minima (i.e., stable molecules) and transition states are discussed, as well as infrared (IR), Raman, and vibrational circular dichroism (VCD) spectra, all of which can now be computed theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badger, R. M. (1934). A relation between internuclear distances and bond force constants. Journal of Chemical Physics, 2, 128.

    Article  CAS  Google Scholar 

  • Badger, R. M. (1935). The relation between the internuclear distances and force constants of molecules and its application to polyatomic molecules. Journal of Chemical Physics, 3, 710.

    Article  CAS  Google Scholar 

  • Bak, K. L., Devlin, F. J., Ashvar, C. S., Taylor, P. R., Frisch, M. J., & Stephens, P. J. (1995). Ab initio calculation of vibrational circular dichroism spectra using gauge-invariant atomic orbitals. Journal of Physical Chemistry, 99, 14918.

    Article  CAS  Google Scholar 

  • Baker, J. (1986). An algorithm for the location of transition states. Journal of Computational Chemistry, 7, 385.

    Article  CAS  Google Scholar 

  • Baker, J. (1992). Geometry optimization in Cartesian coordinates: Constrained optimization. Journal of Computational Chemistry, 13, 240.

    Article  Google Scholar 

  • Baker, J. (1993). Techniques for Geometry Optimization: A Comparison of Cartesian and Natural Internal Coordinates. Journal of Computational Chemistry, 14, 1085.

    Article  CAS  Google Scholar 

  • Baker, J. (1997). Constrained optimization in delocalized internal coordinates. Journal of Computational Chemistry, 18, 1079.

    Article  CAS  Google Scholar 

  • Baker, J. (2008). A scaled quantum mechanical reinvestigation of the vibrational spectrum of toluene. Journal of Molecular Structure THEOCHEM, 865, 49.

    Article  CAS  Google Scholar 

  • Baker, J., & Bergeron, D. (1993). Constrained optimization in cartesian coordinates. Journal of Computational Chemistry, 14, 1339.

    Article  CAS  Google Scholar 

  • Baker, J., & Chan, F. (1996). The location of transition states: A comparison of Cartesian, Z-matrix, and natural internal coordinates. Journal of Computational Chemistry, 17, 888.

    Article  CAS  Google Scholar 

  • Baker, J., & Hehre, W. J. (1991). Geometry optimization in cartesian coordinates: The end of the Z-matrix? Journal of Computational Chemistry, 12, 606.

    Article  CAS  Google Scholar 

  • Baker, J., & Pulay, P. (1998). Predicting the vibrational spectra of some simple fluorocarbons by direct scaling of primitive valence force constants. Journal of Computational Chemistry, 19, 1187.

    Article  CAS  Google Scholar 

  • Baker, J., & Pulay, P. (2000). Efficient geometry optimization of molecular clusters. Journal of Computational Chemistry, 21, 69.

    Article  CAS  Google Scholar 

  • Baker, J., Muir, M., & Andzelm, J. (1985). A study of some organic reactions using density functional theory. Journal of Chemical Physics, 102, 2063.

    Article  Google Scholar 

  • Baker, J., Andzelm, J., Scheiner, A., & Delley, B. (1994). The effect of grid quality and weight derivatives in density functional calculations. Journal of Chemical Physics, 101, 8894.

    Article  CAS  Google Scholar 

  • Baker, J., Kessi, A., & Delley, B. (1996). The generation and use of delocalized internal coordinates in geometry optimization. Journal of Chemical Physics, 105, 192.

    Article  CAS  Google Scholar 

  • Baker, J., Jarzecki, A. A., & Pulay, P. (1998). Direct scaling of primitive valence force constants: An alternative approach to scaled quantum mechanical force fields. Journal of Physical Chemistry A, 102, 1412.

    Article  CAS  Google Scholar 

  • Baker, J., Kinghorn, D., & Pulay, P. (1999). Geometry optimization in delocalized internal coordinates: An efficient quadratically scaling algorithm for large molecules. Journal of Chemical Physics, 110, 4986.

    Article  CAS  Google Scholar 

  • Baker, J., Wolinski, K., Malagoli, M., Kinghorn, D., Wolinski, P., Magyarfalvi, G., Saebo, S., Janowski, T., & Pulay, P. (2009). Quantum chemistry in parallel with PQS. Journal of Computational Chemistry, 30, 317.

    Article  CAS  Google Scholar 

  • Bakken, V., & Helgaker, T. (2002). The efficient optimization of molecular geometries using redundant internal coordinates. Journal of Chemical Physics, 117, 9160.

    Article  CAS  Google Scholar 

  • Banerjee, A., Adams, N., Simons, J., & Shepard, R. (1985). Search for stationary points on surfaces. Journal of Physical Chemistry, 89, 52.

    Article  CAS  Google Scholar 

  • Becke, A. D. (1988). A multicenter numerical integration scheme for polyatomic molecules. Journal of Chemical Physics, 88, 2547.

    Article  CAS  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648.

    Google Scholar 

  • Bell, S., & Crighton, J. S. (1984). Locating transition states. Journal of Chemical Physics, 80, 2464.

    Article  CAS  Google Scholar 

  • Bell, S., Crighton, J. S., & Fletcher, R. (1981). A new efficient method for locating saddle points. Chemical Physics Letters, 82, 122.

    Article  CAS  Google Scholar 

  • Bertie, J. E., Apelblat, V., & Keefe, C. D. (2005). Infrared intensities of liquids XXV: Dielectric constants, molar polarizabilities and integrated intensities of liquid toluene at 25C between 4800 and 400cm−1. Journal of Molecular Structure, 750, 78.

    Article  CAS  Google Scholar 

  • Beyer, M., & Clausen-Schaumann, H. (2005). Mechanochemistry: The mechanical activation of covalent bonds. Chemical Review, 105, 2921.

    Article  CAS  Google Scholar 

  • Binkley, J. S., Pople, J. A., & Hehre, W. J. (1980). Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. Journal of the American Chemical Society, 102, 939.

    Google Scholar 

  • Blom, C. E., & Altona, C. (1976). Application of self-consistent-field ab initio calculations to organic molecules II. Scale factor method for the calculation of vibrational frequencies from ab initio force constants: Ethane, propane and cyclopropane. Molecular Physics, 31, 1377.

    Google Scholar 

  • Blom, C. E., & Altona, C. (1977a). Application of self-consistent-field ab initio calculations to organic molecules IV. Force constants of propene scaled on experimental frequencies. Molecular Physics, 33, 875.

    Google Scholar 

  • Blom, C. E., & Altona, C. (1977b). Application of self-consistent-field ab initio calculations to organic molecules V. Ethene: General valence force field scaled on harmonic and anharmonic data, infra-red and Raman intensities. Molecular Physics, 34, 177.

    Google Scholar 

  • Blom, C. E., Otto, L. P., & Altona, C. (1976). Application of self-consistent-field ab initio calculations to organic molecules III. Equilibrium structure of water, methanol and dimethyl ether, general valence force field of water and methanol scaled on experimental frequencies. Molecular Physics, 32, 1137.

    Google Scholar 

  • Bofill, J. M. (1994). Updated Hessian matrix and the restricted step method for locating transition structures. Journal of Computational Chemistry, 15, 1.

    Article  CAS  Google Scholar 

  • Born, M., & Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annalen der Physik, 389, 457.

    Article  Google Scholar 

  • Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms. I: General considerations. Journal of the Institute of Mathematics and Its Applications, 6, 76.

    Google Scholar 

  • Cerjan, C. J., & Miller, W. H. (1981). On finding transition states. Journal of Chemical Physics, 75, 2800.

    Article  CAS  Google Scholar 

  • Csaszar, P., & Pulay, P. (1984). Geometry optimization by direct inversion in the iterative subspace. Journal of Molecular Structure THEOCHEM, 114, 31.

    Article  CAS  Google Scholar 

  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. Journal of Chemical Physics, 54, 724.

    Google Scholar 

  • Eckert, F., Pulay, P., & Werner, H.-J. (1997). Ab initio geometry optimization for large molecules. Journal of Computational Chemistry, 18, 1473.

    Article  CAS  Google Scholar 

  • Einstein, A., & Stern, O. (1913). Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt. Annals of Physics, 40, 551.

    Article  Google Scholar 

  • El Youssoufi, Y., Herman, M., & Liévin, J. (1998a). The ground electronic state of 1,2-dichloroethane I. Ab initio investigation of the geometrical, vibrational and torsional structure. Molecular Physics, 94, 461.

    Google Scholar 

  • El Youssoufi, Y., Liévin, J., van der Auwera, J., Herman, M., Federov, A., & Snavely, D. L. (1998b). The ground electronic state of 1,2-dichloroethane II. Experimental investigation of the fundamental and overtone vibrations. Molecular Physics, 94, 473.

    Google Scholar 

  • Farkas, O., & Schlegel, H. B. (1998). Methods for geometry optimization of large molecules. I. An O(N2) algorithm for solving systems of linear equations for the transformation of coordinates and forces. Journal of Chemical Physics, 109, 7100.

    Google Scholar 

  • Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Journal, 13, 317.

    Article  Google Scholar 

  • Fletcher, R. (1980). Practical methods of optimization (Vol. 1). New York: Wiley.

    Google Scholar 

  • Fogarasi, G., Zhou, X., Taylor, P. W., & Pulay, P. (1992). The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and empirical correction by offset forces. Journal of the American Chemical Society, 114, 8191.

    Article  CAS  Google Scholar 

  • Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Mathematics of Computation, 24, 23.

    Article  Google Scholar 

  • Halgren, T. A., & Lipscomb, W. N. (1977). The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chemical Physics Letters, 49, 225.

    Article  CAS  Google Scholar 

  • Halls, M. D., Velkovski, J., & Schlegel, H. B. (2001). Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theoretical Chemistry Accounts, 105, 413.

    Article  CAS  Google Scholar 

  • Hammond, G. S. (1955). A correlation of reaction rates. Journal of the American Chemical Society, 77, 334.

    Article  CAS  Google Scholar 

  • Hertwig, R. H., & Koch, W. (1997). On the parameterization of the local correlation functional. What is Becke-3-LYP? Chemical Physics Letters, 268, 345.

    Google Scholar 

  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review B, 136, 864.

    Article  Google Scholar 

  • Ionova, I. V., & Carter, E. A. (1993). Ridge method for finding saddle points on potential energy surfaces. Journal of Chemical Physics, 98, 6377.

    Article  CAS  Google Scholar 

  • Jiang, H., Appadoo, D., Robertson, E., & McNaughton, D. (2002). A comparison of predicted and experimental vibrational spectra in some small fluorocarbons. Journal of Computational Chemistry, 23, 1220.

    Article  CAS  Google Scholar 

  • Johnson, B. G., Gill, P. M. W., & Pople, J. A. (1993). The performance of a family of density functional methods. Journal of Chemical Physics, 98, 5612.

    Article  CAS  Google Scholar 

  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review A, 140, 1133.

    Article  Google Scholar 

  • Kveseth, K. (1974). Conformational analysis. 1. The temperature effect on the structure and composition of the rotational conformers of 1,2-Dichloroethane as studied by gas electron diffraction. Acta Chemica Scandinavica A, 28, 482.

    Google Scholar 

  • Lindh, R., Bernhardsson, A., Karlström, G., & Malmquist, P.-A. (1995). On the use of a Hessian model function in molecular geometry optimizations. Chemical Physics Letters, 241, 423.

    Article  CAS  Google Scholar 

  • Malagoli, M., & Baker, J. (2003). The effect of grid quality and weight derivatives in density functional calculations of harmonic vibrational frequencies. Journal of Chemical Physics, 119, 12763.

    Article  CAS  Google Scholar 

  • McQuarrie, D. A. (2000). Statistical mechanics. California: University Science Books.

    Google Scholar 

  • Merrick, J. P., Moran, D., & Radom, L. (2007). An evaluation of harmonic vibrational frequency scale factors. Journal of Physical Chemistry A, 111, 11683.

    Article  CAS  Google Scholar 

  • Mitin, A. V., Baker, J., & Pulay, P. (2003). An improved 6-31G basis set for first-row transition metals. Journal of Chemical Physics, 118, 7775.

    Article  CAS  Google Scholar 

  • Mizushima, S., Shimanouchi, T., Harada, I., Abe, Y., & Takeuchi, H. (1975). Infrared and Raman Spectra of 1,2-Dichloroethane and its deuterium compound in the gaseous, liquid, and solid states. Canadian Journal of Physics, 53, 2085.

    Article  CAS  Google Scholar 

  • Muir, M. & Baker, J. (1996). A systematic density functional study of fluorination in methane, ethane and ethylene. Molecular Physics, 89, 211.

    Article  CAS  Google Scholar 

  • Murtagh, B. A., & Sargent, R. W. H. (1970). Computational experience with quadratically convergent minimisation methods. Computer Journal, 13, 185.

    Article  Google Scholar 

  • Paizs, B., Baker, J., Suhai, S., & Pulay, P. (2000). Geometry optimization of large biomolecules in redundant internal coordinates. Journal of Chemical Physics, 113, 6566.

    Article  CAS  Google Scholar 

  • Pardalos, P. M., Shalloway, D., & Xue, G. (Eds.). (1995). Global minimization of nonconvex functions: Molecular conformation and protein folding. Providence: American Mathematical Society.

    Google Scholar 

  • Peng, C., & Schlegel, H. B. (1993). Combining synchronous transit and quasi-newton methods to find transition states. Israel Journal of Chemistry, 33, 449.

    Article  CAS  Google Scholar 

  • Peng, C., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49.

    Article  CAS  Google Scholar 

  • Pople, J. A., Krishnan, R., Schlegel, H. B., & Binkley, J. S. (1979). Derivative studies in Hartree-Fock and Møller-Plesset theories. International Journal of Quantum Chemistry: Symposium, 13, 225.

    CAS  Google Scholar 

  • Poppinger, D. (1975). On the calculation of transition states. Chemical Physics Letters, 35, 550.

    Article  CAS  Google Scholar 

  • Powell, M. J. D. (1971). Recent advances in unconstrained optimization. Mathematical Programming, 1, 26.

    Article  Google Scholar 

  • PQS (2010). PQS version 4.0. Parallel Quantum Solutions 2013 Green Acres Road, Suite A, Fayetteville, AR 72703. Email: sales@pqs-chem.com; URL: http://www.pqs-chem.com.

  • Pulay, P. (1977). Direct use of the gradient for investigating molecular energy surfaces. New York: Plenum.

    Google Scholar 

  • Pulay, P. (1980). Convergence acceleration of iterative sequences. The case of SCF iteration. Chemical Physics Letters, 73, 393.

    Google Scholar 

  • Pulay, P. (1982). Improved SCF convergence acceleration. Journal of Computational Chemistry, 3, 556.

    Article  CAS  Google Scholar 

  • Pulay, P., & Fogarasi, G. (1992). Geometry optimization in redundant internal coordinates. Journal of Chemical Physics, 96, 2856.

    Article  CAS  Google Scholar 

  • Pulay, P., & Torok, F. (1966). On the parameter form of the force constant matrix II. Investigation of the assignment with the aid of the parameter form. Acta Chimica Academiae Scientarium Hungaricae, 47, 273.

    Google Scholar 

  • Pulay, P., Fogarasi, G., Pang, F., & Boggs, J. E. (1979). Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives. Journal of the American Chemical Society, 101, 2550.

    Article  CAS  Google Scholar 

  • Pulay, P., Fogarasi, G., Pongor, G., Boggs, J. E., & Vargha, A. (1983). Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. Journal of the American Chemical Society, 105, 7037.

    Google Scholar 

  • Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121, 501.

    Article  CAS  Google Scholar 

  • Rassalov, V. A., Pople, J. A., Ratner, M. A., & Windus, T. L. (1998). 6-31G basis set for atoms K through Zn. Journal of Chemical Physics, 109, 1223.

    Article  Google Scholar 

  • Schäfer, L. (1983). The ab initio gradient revolution in structural chemistry: The importance of local molecular geometries and the efficacy of joint quantum mechanical and experimental procedures. Journal of Molecular Structure, 100, 51.

    Article  Google Scholar 

  • Schlegel, H. B. (1984). Estimating the hessian for gradient-type geometry optimizations. Theoretica Chimica Acta, 66, 333.

    Article  CAS  Google Scholar 

  • Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24, 647.

    Article  Google Scholar 

  • Simons, J., Jorgensen, P., Taylor, H., & Ozment, J. (1983). Walking on potential energy surfaces. Journal of Physical Chemistry, 87, 2745.

    Article  CAS  Google Scholar 

  • Stephens, P. J., & Lowe, M. A. (1985). Vibrational circular dichroism. Annual Review of Physical Chemistry, 36, 213.

    Article  CAS  Google Scholar 

  • Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10, 209.

    Google Scholar 

  • Swart, M., & Bickelhaupt, F. M. (2006). Optimization of strong and weak coordinates. International Journal of Quantum Chemistry, 106, 2536.

    Article  CAS  Google Scholar 

  • Wikipedia (2010). The article “Born–Oppenheimer approximation.”

    Google Scholar 

  • Wilson, E. B., Decius, J. C., & Cross, P. C. (1955). Molecular vibrations. New York: McGraw-Hill.

    Google Scholar 

  • Wolinski, K., & Baker, J. (2009). Theoretical predictions of enforced structural changes in molecules. Molecular Physics, 107, 2403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Baker, J. (2012). Molecular Structure and Vibrational Spectra. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_10

Download citation

Publish with us

Policies and ethics