Skip to main content

Actuator Fault Detection in UAVs

  • Reference work entry
  • First Online:
Handbook of Unmanned Aerial Vehicles

Abstract

Future unmanned aerial vehicles (UAVs) will be designed to achieve their missions with increased efficiency, safety, and security. To this end, an efficient fault detection and isolation (FDI) system should be capable of monitoring the health status of the aircraft. Fault-tolerant control systems for small and low-cost UAVs should not increase significantly the number of actuators or sensors needed to achieve the safer operation. This chapter is dedicated to actuator fault detection systems for UAVs, with two main requirements: realtime capability and modularity. After defining the terminology employed in this field, this chapter reviews some commonly used techniques in FDI systems. The chapter continues by presenting briefly the mathematical model of a UAV which will serve as a basis for the design of two actuator FDI systems. The first method presents and illustrates the multiple-model approach, whereas the second method presents an FDI system which is based on a single model. Both methods have been enhanced by a mechanism that actively tests actuators in order to efficiently detect and isolate actuator faults and failures. This chapter explains the advantages and drawbacks of each method and discusses issues of robustness against model uncertainties and external perturbation. In addition, aspects of computational load are addressed. Finally, the FDI systems of this chapter are applied to a realistic model of an unmanned aircraft, and the performance of the methods is shown in simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.J. Adams, Robust Multivariable Flight Control (Springer, London/New York, 1994)

    Book  Google Scholar 

  • M. Azam, K. Pattipati, J. Allanach, S. Poll, A. Petterson-Hine, In-flight fault detection and isolation in aircraft flight control systems, in Proceedings of IEEE Aerospace Conference, paper 1429, (BigSky, MT, 2005)

    Google Scholar 

  • F. Bateman, H. Noura, M. Ouladsine, Active fault diagnosis and major actuator failure accommodation: application to a UAV, in Advances in Flight Control Systems, ed. by A. Balint (InTech, Rijeka, 2011), pp. 137–158

    Google Scholar 

  • C. Belcastro, B.-C. Chang, Uncertainty modeling for robustness analysis of failure detection and accommodation systems, in Proceedings of the IEEE American Control Conference, Anchorage, 2002, pp. 4776–4782

    Google Scholar 

  • M. Bodson, An adaptive algorithm with information-dependant data forgetting, in Proceedings of the IEEE American Control Conference, Seattle, WA, 1995, pp. 3485–3489

    Google Scholar 

  • J. Boskovic, R. Mehra, Failure detection, identification and reconfiguration in flight control, in Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances, ed. by F. Caccavale, L. Villani. Springer Tracts in Advanced Robotics, vol. 1 (Springer, Berlin/Heidelberg, 2003), pp. 129–167. 10.1007/3–540–45737–2–5

    Chapter  Google Scholar 

  • J.D. Boskovic, S.E. Bergstrom, R.K. Mehra, Robust integrated flight control design under failures, damage, and state-dependant disturbances. AIAA J. Guid. Control Dyn. 28(5), 902–917 (2005)

    Article  Google Scholar 

  • J.D. Boskovic, J. Redding, R.K. Mehra, Stable adaptive reconfigurable flight control with self-diagnostics, in Proceedings of the IEEE American Control Conference, New York, 2007, pp. 5765–5770

    Google Scholar 

  • J. Brinker, K.A. Wise, Flight testing of a reconfigurable flight control law on the X-36 tailless fighter aircraft, in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Denver, CO, 2000

    Google Scholar 

  • R.G. Brown, P.Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering (Wiley, New York, 1997)

    MATH  Google Scholar 

  • S. Brunke, M. Campbell, Estimation architecture for future autonomous vehicles, in Proceedings of the IEEE American Control Conference, Anchorage, 2002, pp. 1108–1114

    Google Scholar 

  • J. Buffington, P. Chandler, M. Pachter, On-line identification for aircraft with distributed control effectors. AIAA J. Guid. Control Dyn. 9, 1033–1049 (1999)

    Google Scholar 

  • A.J. Calise, S. Lee, M. Sharma, Direct adaptive reconfigurable control of a tailless fighter aircraft, in Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA, 1998

    Google Scholar 

  • M.E. Campbell, J.W. Lee, E. Scholte, D. RathBun, Simulation and flight test of autonomous aircraft estimation, planning, and control algorithms. AIAA J. Guid. Control Dyn. 30(6), 1597–1609 (2007)

    Article  Google Scholar 

  • J. Chen, R.J. Patton, Robust Model Based Diagnosis for Dynamic Systems (Kluwer, Dordrecht, 1999)

    Book  MATH  Google Scholar 

  • J. Chen, R.J. Patton, H. Zhang, Design of unknown input observers and robust fault detection filters. Int. J. Control 63(1), 85–105 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • E.Y. Chow, A.S. Willsky, Analytical redundancy and the design of robust detection systems. IEEE Trans. Autom. Control 29(7), 603–614 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • E.G. Collins, T. Song, Robust H ∞ estimation and fault detection of uncertain dynamic systems. AIAA J. Guid. Control Dyn. 23(5), 857–864 (2000)

    Article  Google Scholar 

  • G.J.J. Ducard, Fault-Tolerant Flight Control and Guidance Systems for a Small Unmanned Aerial V e h i c l e. Ph.D. thesis, ETH Zürich, 2007 Diss. No. 17505

    Google Scholar 

  • G. Ducard,. Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles (Springer, London, 2009). ISBN:978–1–84882–560–4

    Google Scholar 

  • G. Ducard, H.P. Geering, A reconfigurable flight control system based on the EMMAE method, in Proceedings of the IEEE American Control Conference, Minneapolis, MN, 2006, pp. 5499–5504

    Google Scholar 

  • G. Ducard, H.P. Geering, Efficient nonlinear actuator fault detection and isolation system for unmanned aerial vehicles. AIAA J. Guid. Control Dyn. 31(1), 225–237 (2008)

    Article  Google Scholar 

  • G. Ducard, H.P. Geering, SMAC-FDI: new active fault detection and isolation scheme with high computational efficiency, in Proceedings of the IEEE 2010 Conference on Control and Fault Tolerant Systems, Nice, France, 2010, pp. 30–37

    Chapter  Google Scholar 

  • P. Eide, P.S. Maybeck, An MMAE failure detection system for the F-16. IEEE Trans. Aerosp. Electron. Syst. 32(3), 1125–1136 (1996)

    Article  Google Scholar 

  • M. Elgersma, S. Glavaski, Reconfigurable control for active management of aircraft system failures, in Proceedings of IEEE American Control Conference, Arlington, VA, 2001, pp. 2627–2639

    Google Scholar 

  • M. Elgersma, D. Enns, S. Shald, P. Voulgaris, Parameter identification for systems with redundant actuators, in Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Boston, MA, 1998

    Google Scholar 

  • S. Fekri, M. Athans, A. Pascoal, Issues, progress and new results in robust adaptive control. Int. J. Adapt. Control Signal Process. 20(10), 519–579 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • P. Frank, Enhancement of robustness in observer-based fault detection. Int. J. Control 59(4), 955–984 (1994)

    Article  MATH  Google Scholar 

  • J.J. Gertler, Fault detection and isolation using parity relations. Control Eng. Pract. 5(5), 653–661 (1997)

    Article  Google Scholar 

  • C. Hajiyev, F. Caliskan, Fault-Diagnosis and Reconfiguration in Flight Control Systems (Kluwer Academic Publishers, Dordrecht, 2003). ISBN:978–1–4020–7605–3

    Google Scholar 

  • R. Isermann, Fault-Diagnosis Systems, An Introduction from Fault Detection to Fault Tolerance (Springer, Berlin/Heidelberg, 2006)

    Google Scholar 

  • S. Julier, J. Uhlmann, H.F. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–46 (1960)

    Article  Google Scholar 

  • B.H. Koh, Z. Li, P. Dharap, S. Nagarajaiah, M.Q. Phan, Actuator failure detection through interaction matrix formulation. AIAA J. Guid. Control Dyn. 28(5), 895–901 (2005)

    Article  Google Scholar 

  • D.T. Magill, Optimal adaptive estimation of sampled stochastic processes. IEEE Trans. Autom. Control 10(4), 434–439 (1965)

    Article  MathSciNet  Google Scholar 

  • A. Marcos, S. Ganguli, G.J. Balas, An application of H ∞ fault detection and isolation to a transport aircraft. Control Eng. Pract. 13, 105–119 (2005)

    Article  Google Scholar 

  • P.S. Maybeck, (1994). Stochastic Models, Estimation, and Control, Volume 1 (Academic, New York, Inc, 1979); republished by Navtech, Arlington, VA, 1994

    Google Scholar 

  • P.S. Maybeck, Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems. Int. J. Robust Nonlinear Control 9(14), 1051–1070 (1999)

    Article  Google Scholar 

  • P.S. Maybeck, R.D. Stevens, Reconfigurable flight control via multiple model adaptive control methods. IEEE Trans. Aerosp. Electron. Syst. 27(3), 470–479 (1991)

    Article  Google Scholar 

  • M. Möckli, Guidance and Control for Aerobatic Maneuvers of an Unmanned Airplane. Ph.D. thesis, ETH Zurich, 2006. Diss No. 16586

    Google Scholar 

  • L. Ni, Fault-Tolerant Control of Unmanned Underwater Vehicles. Ph.D. thesis, VA Tech. Univ., Blacksburg, VA, 2001

    Google Scholar 

  • R.J. Patton, J. Chen, Observer-based fault detection and isolation: robustness and applications. Control Eng. Pract. 5(5), 671–682 (1997)

    Article  Google Scholar 

  • R.J. Patton, P.M. Frank, R.N. Clark, Fault Diagnosis in Dynamic Systems: Theory and Applications (Prentice-Hall, Englewood Cliffs, 1989)

    Google Scholar 

  • R.J. Patton, P.M. Frank, R.N. Clark, Issues of Fault Diagnosis for Dynamic Systems (Springer, London, 2000)

    Book  Google Scholar 

  • R.J. Patton, F.J. Uppal, S. Simani, B. Polle, Reliable fault diagnosis scheme for a spacecraft control system. J. Risk Reliab. 222, 139–152 (2008). doi:10.1243/1748006XJRR98

    Google Scholar 

  • L. Perea, P. Elosegui, New state update equation for the unscented Kalman filter. AIAA J. Guid. Control Dyn. 31(5), 1500–1504 (2008)

    Article  Google Scholar 

  • I. Rapoport, Y. Oshman, Fault-tolerant particle filtering by using interacting multiple model-based Rao-Blackwellisation. AIAA J. Guid. Control Dyn. 28(6), 1171–1177 (2005)

    Article  Google Scholar 

  • H.P. Rotstein, R. Ingvalson, T. Keviczky, G.J. Balas, Fault-detection design for uninhabited aerial vehicles. AIAA J. Guid. Control Dyn. 29(5), 1051–1060 (2006)

    Article  Google Scholar 

  • D. Rupp, G. Ducard, H.P. Geering, E. Shafai, Extended multiple model adaptive estimation for the detection of sensor and actuator faults, in Proceedings of IEEE Control and Decision Conference, and European Control Conference, Seville, Spain, 2005, pp. 3079–3084

    Chapter  Google Scholar 

  • P.A. Samara, G.N. Fouskitakis, J.S. Sakellariou, S.D. Fassois, A statistical method for the detection f sensor abrupt faults in aircraft control systems. IEEE Trans. Control Syst. Technol. 16(4), 789–798 (2008)

    Article  Google Scholar 

  • J.D. Schierman, D.G. Ward, J.R. Hull, N. Gandhi, M.W. Oppenheimer, D.B. Doman, Integrated adaptive guidance and control for re-entry vehicles with flight-test results. AIAA J. Guid. Control Dyn. 27(6), 975–988 (2004)

    Article  Google Scholar 

  • J.-Y. Shin, C. Belcastro, T. Khong, Closed-loop evaluation of an integrated failure identification and fault tolerant control system for a transport aircraft, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, 2006. AIAA 2006–6310

    Google Scholar 

  • Control Conference and Exhibit, Keystone, CO, 2006. AIAA 2006–6310 D. Shore, M. Bodson, Flight testing of a reconfigurable control system on an unmanned aircraft. AIAA J. Guid. Control Dyn. 28(4), 698–707 (2005)

    Article  Google Scholar 

  • AIAA J. Guid. Control Dyn. 28(4), 698–707 (2005) R.F. Stengel, Flight Dynamics (Princeton University Press, Princeton, 2004)

    Google Scholar 

  • B. Stevens, F. Lewis, Aircraft Control and Simulation, 2nd edn. (Wiley, New York, 2003)

    Google Scholar 

  • I. Szaszi, A. Marcos, G. Balas, J. Bokor, Linear Parameter-varying detection filter design for a Boeing 747-100/200 aircraft. AIAA J. Guid. Control Dyn. 28(3), 461–470 (2005)

    Article  Google Scholar 

  • Boeing 747-100/200 aircraft. AIAA J. Guid. Control Dyn. 28(3), 461–470 (2005) N. Tanaka, S. Suzuki, K. Masui, H. Tomita, Restructurable guidance and control for aircraft with failures considering gusts effects. AIAA J. Guid. Control Dyn. 29(3), 635–642 (2006)

    Article  Google Scholar 

  • G. Tao, S. Chen, X. Tang, S.M. Joshi, Adaptive Control of Systems with Actuator Failures (Springer, London/Berlin/Heidelberg, 2004)

    Book  MATH  Google Scholar 

  • J. Urnes, R. Yeager, J. Stewart, Flight demonstration of the self-repairing flight control system in a NASA F-15 aircraft, in National Aerospace Electronics Conference, Rept. 90CH2881–1, Dayton, OH, 1990

    Google Scholar 

  • D. Ward, R. Barron, A self-designing receding horizon optimal flight controller, in Proceedings of the IEEE American Control Conference, Seattle, WA, 1995, pp. 3490–3494

    Google Scholar 

  • D. Ward, R.L. Barron, M.P. Carley, T.J. Curtis, Real-time Parameter identification for self-designing flight control, in Proceedings of the National Aerospace and Electronics Conference (NAECON), Dayton, OH, 1994

    Google Scholar 

  • D.G. Ward, J.F. Monaco, M. Bodson, Development and flight testing of a Parameter identification algorithm for reconfigurable control. AIAA J. Guid. Control Dyn. 21(6), 948–956 (1998)

    Article  Google Scholar 

  • K. Wise, J. Brinker, A. Calise, D. Enns, M. Elgersma, P. Voulgaris, Direct adaptive reconfigurable flight control for a tailless advanced fighter aircraft. Int. J. Robust Nonlinear Control 9, 999–1012 (1999)

    Article  Google Scholar 

  • A. Younghwan, A Design of Fault Tolerant Flight Control Systems for Sensor and Actuator Failures Using On-Line Learning Neural Networks. Ph.D. thesis, West Virginia University, 1998

    Google Scholar 

  • P. Zarchan, H. Musoff, Fundamentals of Kalman Filtering: A Practical Approach. Progress in Astronautics and Aeronautics, vol. 208, 2nd edn. (AIAA Inc., Reston, 2005)

    Google Scholar 

  • Y. Zhang, J. Jiang, Integrated design of reconfigurable fault-tolerant control systems. AIAA J. Guid. Control Dyn. 24(1), 133–136 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ducard .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 44.2 Aircraft model Parameters

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ducard, G. (2015). Actuator Fault Detection in UAVs. In: Valavanis, K., Vachtsevanos, G. (eds) Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9707-1_43

Download citation

Publish with us

Policies and ethics