Skip to main content

Argumentation and Artificial Intelligence

  • Reference work entry
  • First Online:

Abstract

This chapter is devoted to contributions to the field of argumentation as developed in the field of artificial intelligence. In the last two decades, a community has been formed that addresses issues in argumentation theory focusing on methods and problems as studied in artificial intelligence. Much of this work is formal or computational in nature, but often has a relevance that goes beyond artificial intelligence per se. This chapter is an attempt to show this relevance to a wider audience by focusing on key ideas and themes and less on formal and computational detail. The chapter starts with historic roots of the treatment of argumentation in artificial intelligence, by discussing non-monotonic logic, in particular Raymond Reiter’s logic of default reasoning and logic programming, and defeasible reasoning, where especially John Pollock’s multifaceted treatment of argument defeat has shaped how argumentation is handled in artificial intelligence. The chapter continues with what is known in the field as abstract argumentation. In abstract argumentation, the focus of study is on attack between arguments, as an abstract formal relation, an approach proposed and developed by Phan Minh Dung. This approach has become very influential, but by its formal mathematical nature can prove daunting. Many key ideas can be explained in elementary terms, which is what we have aimed to do in Sect. 11.4. Then follows a discussion of artificial intelligence research into argument structure, with treatments of the role of argument specificity, conclusive force, the relation with classical logic, and the combination of support and attack. Next we treat argument schemes and argumentation dialogues, two areas of study where there is an especially strong cross-fertilization between argumentation theory and artificial intelligence. In part this can be explained by the study of argumentation by AI researchers focusing on the field of law and by the rise of the multi-agent systems perspective in computer science and artificial intelligence. Specific themes reviewed in the chapter are reasoning with rules and with cases, the role of the audience and values, argumentation support software, burden of proof and evidence, and argument strength. All in all we hope that the chapter helps to enhance the collaboration between artificial intelligence and argumentation theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We mention a few of these journals: Artificial Intelligence, Artificial Intelligence and Law, Autonomous Agents and Multi-Agent Systems, Computational Intelligence, International Journal of Cooperative Information Systems, International Journal of Human-Computer Studies, Journal of Logic and Computation, and The Knowledge Engineering Review. Contributions have also been made to journals that deal primarily with argumentation, such as Argumentation and Informal Logic. A journal devoted explicitly to the interdisciplinary area of AI is Argument and Computation.

  2. 2.

    The first COMMA conference was held in Liverpool in 2006, followed by conferences in Toulouse (2008), Desenzano del Garda (2010), and Vienna (2012). See http://www.comma-conf.org/. ArgMAS (Argumentation in Multi-Agent Systems) and CMNA (Computational Models of Natural Argument) are related workshops.

  3. 3.

    Nine of the top twenty best cited articles in Artificial Intelligence since 2007 deal with argumentation, five of the top ten, and three of the top five. Source: Scopus.com, June 2012.

  4. 4.

    For a survey of the literature up till approximately 2002, we refer to the road map by Reed and Norman (2004a) and the more formally oriented overview by Prakken and Vreeswijk (2002). For more detail, including formal and computational elaboration, the interested reader may wish to consult the original sources referred to in this chapter. In addition, we refer to the collection of papers edited by Rahwan and Simari (Eds., 2009), which contains contributions by a great many researchers in the field of argumentation and artificial intelligence, and to the sources we mentioned in Notes 1 and 2. See also the special issue of the Artificial Intelligence journal edited by Bench-Capon and Dunne (2007).

  5. 5.

    See the entry on nonmonotonic logic in the Stanford Encyclopedia of Philosophy at http://plato.stanford.edu/entries/logic-nonmonotonic/ (Antonelli 2010).

  6. 6.

    See the opening sentence of the paper’s abstract: “What philosophers call defeasible reasoning is roughly the same as non-monotonic reasoning in AI” (Pollock 1987, p. 481).

  7. 7.

    In this volume, logical symbols are introduced in Sect. 3.3.5 and in Sect. 6.2.3. The symbol “∧” stands for conjunction (“and”).

  8. 8.

    Pollock aims for a theory of projectible properties. See also Pollock (1995, p. 66f).

  9. 9.

    See Hitchcock (2001, 2002a) for a survey and a discussion of the OSCAR project for those interested in argumentation. Hitchcock also gives further information about Pollock’s work on practical reasoning, i.e., reasoning concerning what to do.

  10. 10.

    This form of defeat is the basis of Bondarenko et al. (1997). We shall here not elaborate on the distinction between premises and assumptions. One way of thinking about assumptions is to see them as defeasible premises. See Sect. 11.5.3.

  11. 11.

    Prakken (2010) speaks of ways of attack, where argument defeat is the result of argument attack.

  12. 12.

    The ASPIC project (full name: Argumentation Service Platform with Integrated Components) was supported by the EU 6th Framework Programme and ran from January 2004 to September 2007. In the project, academic and industry partners cooperated in developing argumentation-based software systems.

  13. 13.

    The success of the paper is illustrated by its number of citations. By an imperfect but informative count in Google Scholar of July 22, 2013, there were 1938 citations.

  14. 14.

    This is especially helpful when also supporting connections are considered; see Sect. 11.5.

  15. 15.

    In the following, we make use of terminology proposed by Verheij (2007).

  16. 16.

    In establishing the concept, Verheij (1996b) used the term admissible stage extensions. The now standard term semi-stable extension was proposed by Caminada (2006).

  17. 17.

    Dung’s own definition of grounded extension, which does not use labelling, is not discussed here.

  18. 18.

    He believes that a projectibility constraint is required (1995, pp. 105–106). See Note 8.

  19. 19.

    Some would object to the use of the term rules here. Rules are here thought of in analogy with the inference rules of classical logic. An issue is then that, as such, they are not expressed in the logical object language, but in a metalanguage. In the context of defeasible reasoning and argumentation (and also in non-monotonic logic), this distinction becomes less clear. Often there is one logical language to express ordinary sentences, a second formal language (with less structure and/or less semantics and therefore not usually referred to as “logical”) used to express the rules, and the actual metalanguage that is used to define the formal system.

  20. 20.

    Although the term schème argumentative [argumentative scheme] was already used by Perelman and Olbrechts-Tyteca, according to Garssen (2001), van Eemeren et al. (1978, 1984) used the notion of argument(ation) scheme for the first time in its present sense. See also van Eemeren and Kruiger (1987), van Eemeren and Grootendorst (1992a), Kienpointner (1992), and Walton et al. (2008).

  21. 21.

    http://en.wikipedia.org/wiki/Nomic. See also Hofstadter (1996, chapter 4).

  22. 22.

    See also the study of Nomic by Vreeswijk (1995a).

  23. 23.

    For an overview of the field of multi-agent systems, see the textbook by Wooldridge (2009), which contains a chapter entitled “Arguing.”

  24. 24.

    The 2000 Symposium on Argument and Computation at Bonskeid House, Perthshire, Scotland, organized by Reed and Norman, has been a causal factor. See Reed and Norman (2004b).

  25. 25.

    A systematic overview of argumentation dialogue models of negotiation has been provided by Rahwan et al. (2003).

  26. 26.

    The primary journal of the field of AI and Law is Artificial Intelligence and Law, with the biennial ICAIL and annual JURIX as the main conferences.

  27. 27.

    The book is based on Prakken’s (1993) doctoral dissertation.

  28. 28.

    “∀x …” stands for “for every entity x it holds that ….” Similarly, for “∀y ….” See also Sect. 6.2 of this volume.

  29. 29.

    Reason-based logic exists in a series of versions, some introduced in collaboration with Verheij (e.g., Verheij 1996a).

  30. 30.

    We shall simplify Hage’s formalism a bit by omitting the explicit distinction between rules and principles.

  31. 31.

    See also Rissland and Ashley (1987), Ashley (1989), and Rissland and Ashley (2002).

  32. 32.

    The example is inspired by the case material used by Roth (2003).

  33. 33.

    In AI and law, the importance of the modelling of the values and goals underlying legal decisions was already acknowledged by Berman and Hafner (1993).

  34. 34.

    The book’s subtitle adds modestly: A Prolegomenon.

  35. 35.

    The reviews by Kirschner et al. (2003), Verheij (2005b), and Scheuer et al. (2010) provide further detail about argumentation support software.

  36. 36.

    http://rationale.austhink.com/

References

  • Aleven, V. (1997). Teaching case-based reasoning through a model and examples. Doctoral dissertation, University of Pittsburgh.

    Google Scholar 

  • Aleven, V., & Ashley, K. D. (1997a). Evaluating a learning environment for case-based argumentation skills. In Proceedings of the sixth international conference on artificial intelligence and law (pp. 170–179). New York: ACM Press.

    Google Scholar 

  • Aleven, V., & Ashley, K. D. (1997b). Teaching case-based argumentation through a model and examples. Empirical evaluation of an intelligent learning environment. In B. du Boulay & R. Mizoguchi (Eds.), Artificial intelligence in education. Proceedings of AI-ED 97 world conference (pp. 87–94). Amsterdam: IOS Press.

    Google Scholar 

  • Alexy, R. (1978). Theorie der juristischen Argumentation [Theory of legal argumentation]. Frankfurt am Main: Suhrkamp Verlag.

    Google Scholar 

  • Amgoud, L. (2009). Argumentation for decision making. In I. Rahwan & G. R. Simari (Eds.), Argumentation in artificial intelligence (pp. 301–320). Dordrecht: Springer.

    Google Scholar 

  • Amgoud, L., Cayrol, C., Lagasquie-Schiex, M. C., & Livet, P. (2008). On bipolarity in argumentation frameworks. International Journal of Intelligent Systems, 23(10), 1062–1093.

    Google Scholar 

  • Antonelli, G. A. (2010). Non-monotonic logic. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Summer 2010 ed. http://plato.stanford.edu/archives/sum2010/entries/logic-non-monotonic/

  • Antoniou, G., Billington, D., Governatori, G., & Maher, M. (2001). Representation results for defeasible logic. ACM Transactions on Computational Logic, 2(2), 255–287.

    Google Scholar 

  • Ashley, K. D. (1989). Toward a computational theory of arguing with precedents. Accommodating multiple interpretations of cases. In Proceedings of the second international conference on artificial intelligence and law (pp. 93–102). New York: ACM Press.

    Google Scholar 

  • Ashley, K. D. (1990). Modeling legal argument. Reasoning with cases and hypotheticals. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Atkinson, K. (2012). Introduction to special issue on modelling Popov v. Hayashi. Artificial Intelligence and Law, 20, 1–14.

    Google Scholar 

  • Atkinson, K., & Bench-Capon, T. J. M. (2007). Practical reasoning as presumptive argumentation using action based alternating transition systems. Artificial Intelligence, 171, 855–874.

    Google Scholar 

  • Atkinson, K., Bench-Capon, T. J. M., & McBurney, P. (2005). A dialogue game protocol for multi-agent argument over proposals for action. Autonomous Agents and Multi-Agent Systems, 11, 153–171.

    Google Scholar 

  • Atkinson, K., Bench-Capon, T. J. M., & McBurney, P. (2006). Computational representation of practical argument. Synthese, 152, 157–206.

    Google Scholar 

  • Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation semantics. Knowledge Engineering Review, 26(4), 365–410.

    Google Scholar 

  • Barth, E. M., & Krabbe, E. C. W. (1982). From axiom to dialogue. A philosophical study of logics and argumentation. Berlin: de Gruyter.

    Google Scholar 

  • Bench-Capon, T. J. M. (2003). Persuasion in practical argument using value-based argumentation frameworks. Journal of Logic and Computation, 13(3), 429–448.

    Google Scholar 

  • Bench-Capon, T. J. M., Araszkiewicz, M., Ashley, K., Atkinson, K., Bex, F., Borges, F., Bourcier, D., Bourgine, D., Conrad, J. G., Francesconi, E., Gordon, T. F., Governatori, G., Leidner, J. L., Lewis, D. D., Loui, R. P., McCarty, L. T., Prakken, H., Schilder, F., Schweighofer, E., Thompson, P., Tyrrell, A., Verheij, B., Walton, D. N., & Wyner, A. Z. (2012). A history of AI and Law in 50 papers: 25 years of the international conference on AI and Law. Artificial Intelligence and Law, I, 20(3), 215–319.

    Google Scholar 

  • Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence. Artificial Intelligence, 171, 619–641.

    Google Scholar 

  • Bench-Capon, T. J. M., Freeman, J. B., Hohmann, H., & Prakken, H. (2004). Computational models, argumentation theories and legal practice. In C. A. Reed & T. J. Norman (Eds.), Argumentation machines. New frontiers in argument and computation (pp. 85–120). Dordrecht: Kluwer.

    Google Scholar 

  • Bench-Capon, T. J. M., Geldard, T., & Leng, P. H. (2000). A method for the computational modelling of dialectical argument with dialogue games. Artificial Intelligence and Law, 8, 233–254.

    Google Scholar 

  • Bench-Capon, T. J. M., Prakken, H., & Sartor, G. (2009). Argumentation in legal reasoning. In I. Rahwan & G. R. Simari (Eds.), Argumentation in artificial intelligence (pp. 363–382). Dordrecht: Springer.

    Google Scholar 

  • Bench-Capon, T. J. M., & Sartor, G. (2003). A model of legal reasoning with cases incorporating theories and values. Artificial Intelligence, 150, 97–143.

    Google Scholar 

  • Berman, D., & Hafner, C. (1993). Representing teleological structure in case-based legal reasoning. The missing link. In Proceedings of the fourth international conference on artificial intelligence and law (pp. 50–59). New York: ACM Press.

    Google Scholar 

  • Besnard, P., & Hunter, A. (2008). Elements of argumentation. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Bex, F. J. (2011). Arguments, stories and criminal evidence. A formal hybrid theory. Dordrecht: Springer.

    Google Scholar 

  • Bex, F. J., van Koppen, P., Prakken, H., & Verheij, B. (2010). A hybrid formal theory of arguments, stories and criminal evidence. Artificial Intelligence and Law, 18(2), 123–152.

    Google Scholar 

  • Bex, F. J., Prakken, H., Reed, C., & Walton, D. N. (2003). Towards a formal account of reasoning about evidence. Argumentation schemes and generalisations. Artificial Intelligence and Law, 11, 125–165.

    Google Scholar 

  • Bex, F. J., & Verheij, B. (2012). Solving a murder case by asking critical questions. An approach to fact-finding in terms of argumentation and story schemes. Argumentation, 26(3), 325–353.

    Google Scholar 

  • Bondarenko, A., Dung, P. M., Kowalski, R. A., & Toni, F. (1997). An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93, 63–101.

    Google Scholar 

  • van den Braak, S. W., Vreeswijk, G., & Prakken, H. (2007). AVERs. An argument visualization tool for representing stories about evidence. In Proceedings of the 11th international conference on artificial intelligence and law (pp. 11–15). New York: ACM Press.

    Google Scholar 

  • Branting, L. K. (1991). Building explanations from rules and structured cases. International Journal of Man–Machine Studies, 34, 797–837.

    Google Scholar 

  • Branting, L. K. (2000). Reasoning with rules and precedents. A computational model of legal analysis. Dordrecht: Kluwer.

    Google Scholar 

  • Bratko, I. (2001). PROLOG. Programming for artificial intelligence (3rd ed.). Harlow: Pearson (1st ed. 1986).

    Google Scholar 

  • Brewka, G. (2001). Dynamic argument systems. A formal model of argumentation processes based on situation calculus. Journal of Logic and Computation, 11, 257–282.

    Google Scholar 

  • Buckingham Shum, S., & Hammond, N. (1994). Argumentation-based design rationale. What use at what cost? International Journal of Human-Computer Studies, 40(4), 603–652.

    Google Scholar 

  • Caminada, M. (2006). Semi-stable semantics. In P. E. Dunne & T. J. M. Bench-Capon (Eds.), Computational models of argument. Proceedings of COMMA 2006, September 11–12, 2006, Liverpool, UK (Frontiers in artificial intelligence and applications, Vol. 144). Amsterdam: IOS Press.

    Google Scholar 

  • Cayrol, C., & Lagasquie-Schiex, M. C. (2005). On the acceptability of arguments in bipolar argumentation frameworks. In L. Godo (Ed.), Symbolic and quantitative approaches to reasoning with uncertainty. 8th European conference, ECSQARU 2005 (pp. 378–389). Berlin: Springer.

    Google Scholar 

  • Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., & Willmott, S. (2006). Towards an argument interchange format. Knowledge Engineering Review, 21(4), 293–316.

    Google Scholar 

  • Chesñevar, C. I., Simari, G. R., Alsinet, T., & Godo, L. (2004). A logic programming framework for possibilistic argumentation with vague knowledge. In Proceedings of the 20th conference on uncertainty in artificial intelligence (pp. 76–84). Arlington, VA: AUAI Press.

    Google Scholar 

  • Crosswhite, J., Fox, J., Reed, C. A., Scaltsas, T., & Stumpf, S. (2004). Computational models of rhetorical argument. In C. A. Reed & T. J. Norman (Eds.), Argumentation machines. New frontiers in argument and computation (pp. 175–209). Dordrecht: Kluwer.

    Google Scholar 

  • d’Avila Garcez, A. S., Lamb, L. C., & Gabbay, D. M. (2009). Neural-symbolic cognitive reasoning. Berlin: Springer.

    Google Scholar 

  • Dignum, F., Dunin-Kęplicz, B., & Verbrugge, R. (2001). Creating collective intention through dialogue. Logic Journal of the IGPL, 9(2), 305–319.

    Google Scholar 

  • Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–357.

    Google Scholar 

  • Dung, P. M., & Thang, P. M. (2010). Towards (probabilistic) argumentation for jury-based dispute resolution. In P. Baroni, F. Cerutti, M. Giacomin, & G. R. Simari (Eds.), Computational models of argument – Proceedings of COMMA 2010 (pp. 171–182). Amsterdam: Ios Press.

    Google Scholar 

  • Dunne, P. E. (2007). Computational properties of argument systems satisfying graph-theoretic constraints. Artificial Intelligence, 171(10), 701–729.

    Google Scholar 

  • Dunne, P. E., & Bench-Capon, T. J. M. (2003). Two party immediate response disputes. Properties and efficiency. Artificial Intelligence, 149(2), 221–250.

    Google Scholar 

  • Dworkin, R. (1978). Taking rights seriously. New impression with a reply to critics. London: Duckworth.

    Google Scholar 

  • van Eemeren, F. H., & Grootendorst, R. (1992a). Argumentation, communication, and fallacies. A pragma-dialectical perspective. Hillsdale: Lawrence Erlbaum (transl. into Bulgarian (2009), Chinese (1991b), French (1996), Romanian (2010), Russian (1992b), Spanish (2007)).

    Google Scholar 

  • van Eemeren, F. H., Grootendorst, R., & Kruiger, T. (1978). Argumentatietheorie [Argumentation theory]. Utrecht: Het Spectrum. (2nd extended ed. 1981; 3rd ed. 1986; English trans. 1984, 1987).

    Google Scholar 

  • van Eemeren, F. H., Grootendorst, R., & Kruiger, T. (1984). The study of argumentation. New York: Irvington. Engl. transl. by H. Lake of F. H. van Eemeren, R. Grootendorst & T. Kruiger (1981). Argumentatietheorie. 2nd ed. Utrecht: Het Spectrum. (1 st ed. 1978). (Reprinted as Eemeren, F. H. van, Grootendorst, R., & Kruiger, T. (1987). Handbook of argumentation theory. A critical survey of classical backgrounds and modern studies. Dordrecht/Providence: Foris).

    Google Scholar 

  • van Eemeren, F. H., & Kruiger, T. (1987). Identifying argumentation schemes. In F. H. van Eemeren, R. Grootendorst, J. A. Blair, & C. Willard (Eds.), Argumentation. Perspectives and approaches (pp. 70–81). Dordrecht: Foris.

    Google Scholar 

  • Egly, U., Gaggl, S. A., & Woltran, S. (2010). Answer-set programming encodings for argumentation frameworks. Argument and Computation, 1(2), 147–177.

    Google Scholar 

  • Elhadad, M. (1995). Using argumentation in text generation. Journal of Pragmatics, 24, 189–220.

    Google Scholar 

  • Falappa, M. A., Kern-Isberner, G., & Simari, G. R. (2002). Explanations, belief revision and defeasible reasoning. Artificial Intelligence, 141(1–2), 1–28.

    Google Scholar 

  • Fenton, N. E., Neil, M., & Lagnado, D. A. (2012). A general structure for legal arguments using Bayesian networks. Cognitive Science, advance access. http://dx.doi.org/10.1111/cogs.12004

  • Fitelson, B. (2010). Pollock on probability in epistemology. Philosophical Studies, 148, 455–465.

    Google Scholar 

  • Fox, J., & Das, S. (2000). Safe and sound. Artificial intelligence in hazardous applications. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Fox, J., & Modgil, S. (2006). From arguments to decisions. Extending the Toulmin view. In D. Hitchcock & B. Verheij (Eds.), Arguing on the Toulmin model. New essays in argument analysis and evaluation (pp. 273–287). Dordrecht: Springer.

    Google Scholar 

  • Gabbay, D. M., Hogger, C. J., & Robinson, J. A. (Eds.). (1994). Handbook of logic in artificial intelligence and logic programming, 3. Non-monotonic reasoning and uncertain reasoning. Oxford: Clarendon.

    Google Scholar 

  • García, A. J., & Simari, G. R. (2004). Defeasible logic programming. An argumentative approach. Theory and Practice of Logic Programming, 4(2), 95–138.

    Google Scholar 

  • Gardner, A. (1987). An artificial intelligence approach to legal reasoning. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Garssen, B. (2001). Argument schemes. In F. H. van Eemeren (Ed.), Crucial concepts in argumentation theory (pp. 81–99). Amsterdam: Amsterdam University Press.

    Google Scholar 

  • van Gelder, T. (2007). The rationale for rationale. Law, Probability and Risk, 6, 23–42.

    Google Scholar 

  • Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In R. A. Kowalski & K. A. Bowen (Eds.), Logic programming. Proceedings of the fifth international conference and symposium (pp. 1070–1080). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Ginsberg, M. L. (1994). AI and non-monotonic reasoning. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming (Non-monotonic reasoning and uncertain reasoning, Vol. 3, pp. 1–33). Oxford: Clarendon.

    Google Scholar 

  • Girle, R., Hitchcock, D., McBurney, P., & Verheij, B. (2004). Decision support for practical reasoning. A theoretical and computational perspective. In C. A. Reed & T. J. Norman (Eds.), Argumentation machines. New frontiers in argument and computation (pp. 55–83). Dordrecht: Kluwer.

    Google Scholar 

  • Gómez Lucero, M., Chesñevar, C., & Simari, G. (2009). Modelling argument accrual in possibilistic defeasible logic programming. In ECSQARU ’09 proceedings of the 10th European conference on symbolic and quantitative approaches to reasoning with uncertainty (pp. 131–143). Berlin: Springer.

    Google Scholar 

  • Gómez Lucero, M., Chesñevar, C., & Simari, G. (2013). Modelling argument accrual with possibilistic uncertainty in a logic programming setting. Information Sciences, 228, 1–25.

    Google Scholar 

  • Gordon, T. F. (1993). The pleadings game. Artificial Intelligence and Law, 2(4), 239–292.

    Google Scholar 

  • Gordon, T. F. (1995). The pleadings game. An artificial intelligence model of procedural justice. Dordrecht: Kluwer.

    Google Scholar 

  • Gordon, T. F., & Karacapilidis, N. (1997). The Zeno argumentation framework. In Proceedings of the ICAIL 1997 conference (pp. 10–18). New York: ACM Press.

    Google Scholar 

  • Gordon, T. F., Prakken, H., & Walton, D. (2007). The Carneades model of argument and burden of proof. Artificial Intelligence, 171, 875–896.

    Google Scholar 

  • Grasso, F. (2002). Towards computational rhetoric. Informal Logic, 22, 195–229.

    Google Scholar 

  • Grasso, F., Cawsey, A., & Jones, R. (2000). Dialectical argumentation to solve conflicts in advice giving. A case study in the promotion of healthy nutrition. International Journal of Human-Computer Studies, 53(6), 1077–1115.

    Google Scholar 

  • Green, N. (2007). A study of argumentation in a causal probabilistic humanistic domain. Genetic counseling. International Journal of Intelligent Systems, 22, 71–93.

    Google Scholar 

  • Habermas, J. (1973). Wahrheitstheorien [Theories of truth]. In H. Fahrenbach (Ed.), Wirklichkeit und Reflexion. Festschrift, für W. Schulz [Reality and reflection. Festschrift for W. Schulz] (pp. 211–265). Pfullingen: Neske.

    Google Scholar 

  • Hage, J. C. (1997). Reasoning with rules. An essay on legal reasoning and its underlying logic. Dordrecht: Kluwer.

    Google Scholar 

  • Hage, J. C. (2000). Dialectical models in artificial intelligence and law. Artificial Intelligence and Law, 8, 137–172.

    Google Scholar 

  • Hage, J. C. (2005). Studies in legal logic. Berlin: Springer.

    Google Scholar 

  • Hage, J. C., Leenes, R., & Lodder, A. R. (1993). Hard cases: A procedural approach. Artificial Intelligence and Law, 2(2), 113–167.

    Google Scholar 

  • Hart, H. L. A. (1951). The ascription of responsibility and rights. In A. Flew (Ed.), Logic and language. Oxford: Blackwell. (Originally Proceedings of the Aristotelian Society, 1948–1949)

    Google Scholar 

  • Hepler, A. B., Dawid, A. P., & Leucari, V. (2007). Object-oriented graphical representations of complex patterns of evidence. Law, Probability & Risk, 6, 275–293.

    Google Scholar 

  • Hitchcock, D. L. (2001). John L. Pollock’s theory of rationality. In C. W. Tindale, H. V. Hansen & E, Sveda (Eds.), Argumentation at the Century’s turn. (Proceedings of the 3rd OSSA Conference, 1999). Windsor, ON: Ontario Society for the Study of Argumentation. CD rom.

    Google Scholar 

  • Hitchcock, D. L. (2002). Pollock on practical reasoning. Informal Logic, 22, 247–256.

    Google Scholar 

  • Hofstadter, D. (1996). Metamagical themas. Questing for the essence of mind and pattern. New York: Basic Books.

    Google Scholar 

  • Hunter, A. (2013). A probabilistic approach to modelling uncertain logical arguments. International Journal of Approximate Reasoning, 54(1), 47–81.

    Google Scholar 

  • Hunter, A., & Williams, M. (2010). Qualitative evidence aggregation using argumentation. In P. Baroni, F. Cerutti, M. Giacomin, & G. R. Simari (Eds.), Computational models of argument – Proceedings of COMMA 2010 (pp. 287–298). Amsterdam: Ios Press.

    Google Scholar 

  • Jakobovits, H., & Vermeir, D. (1999). Robust semantics for argumentation frameworks. Journal of Logic and Computation, 9(2), 215–261.

    Google Scholar 

  • Jensen, F. V., & Nielsen, T. D. (2007). Bayesian networks and decision graphs. New York: Springer.

    Google Scholar 

  • Josephson, J. R., & Josephson, S. G. (Eds.). (1996). Abductive inference. Computation, philosophy, technology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Karacapilidis, N., & Papadias, D. (2001). Computer supported argumentation and collaborative decision making. The HERMES system. Information Systems, 26, 259–277.

    Google Scholar 

  • Kienpointner, M. (1992). Alltagslogik. Struktur and Funktion von Argumentationsmustern [Everyday logic. Structure and functions of specimens of argumentation]. Stuttgart: Fromman-Holzboog.

    Google Scholar 

  • Kirschner, P. A., Buckingham Shum, S. J., & Carr, C. S. (Eds.). (2003). Visualizing argumentation. Software tools for collaborative and educational sense-making. London: Springer.

    Google Scholar 

  • Kjaerulff, U. B., & Madsen, A. L. (2008). Bayesian networks and influence diagrams. New York: Springer.

    Google Scholar 

  • Kowalski, R. A. (2011). Computational logic and human thinking. How to be artificially intelligent. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kunz, W., & Rittel, H. (1970). Issues as elements of information systems (Technical Report 0131). Universität Stuttgart, Institut für Grundlagen der Planung.

    Google Scholar 

  • Kyburg, H. E. (1994). Uncertainty logics. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming, 3. Non-monotonic reasoning and uncertain reasoning (pp. 397–438). Oxford: Clarendon.

    Google Scholar 

  • Lodder, A. R. (1999). DiaLaw. On legal justification and dialogical models of argumentation. Dordrecht: Kluwer.

    Google Scholar 

  • Lorenzen, P., & Lorenz, K. (1978). Dialogische Logik [Dialogical logic]. Darmstadt: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Loui, R. P. (1987). Defeat among arguments. A system of defeasible inference. Computational Intelligence, 2, 100–106.

    Google Scholar 

  • Loui, R. P. (1995). Hart’s critics on defeasible concepts and ascriptivism. In The fifth international conference on artificial intelligence and law. Proceedings of the conference (pp. 21–30). New York: ACM. Extended report available at http://www1.cse.wustl.edu/~loui/ail2.pdf. Accessed 10 July 2012.

    Google Scholar 

  • Loui, R. P. (1998). Process and policy. Resource-bounded nondemonstrative reasoning. Computational Intelligence, 14, 1–38.

    Google Scholar 

  • Loui, R., & Norman, J. (1995). Rationales and argument moves. Artificial Intelligence and Law, 3, 159–189.

    Google Scholar 

  • Loui, R., Norman, J., Altepeter, J., Pinkard, D., Craven, D., Linsday, J., & Foltz, M. A. (1997). Progress on room 5. A testbed for public interactive semi-formal legal argumentation. In Proceedings of the sixth international conference on artificial intelligence and law (pp. 207–214). New York: ACM Press.

    Google Scholar 

  • Mackenzie, J. D. (1979). Question-begging in non-cumulative systems. Journal of Philosophical Logic, 8, 117–133.

    Google Scholar 

  • Makinson, D. (1994). General patterns in non-monotonic reasoning. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming (Non-monotonic reasoning and uncertain reasoning, Vol. 3, pp. 35–110). Oxford: Clarendon.

    Google Scholar 

  • McBurney, P., Hitchcock, D., & Parsons, S. (2007). The eightfold way of deliberation dialogue. International Journal of Intelligent Systems, 22, 95–132.

    Google Scholar 

  • McBurney, P., & Parsons, S. (2002a). Games that agents play. A formal framework for dialogues between autonomous agents. Journal for Logic, Language and Information, 11, 315–334.

    Google Scholar 

  • McBurney, P., & Parsons, S. (2002b). Dialogue games in multi-agent systems. Informal Logic, 22, 257–274.

    Google Scholar 

  • McBurney, P., & Parsons, S. (2009). Dialogue games for agent argumentation. In I. Rahwan & G. R. Simari (Eds.), Argumentation in artificial intelligence (pp. 261–280). Dordrecht: Springer.

    Google Scholar 

  • McCarty, L. (1977). Reflections on TAXMAN. An experiment in artificial intelligence and legal reasoning. Harvard Law Review, 90, 89–116.

    Google Scholar 

  • McCarty, L. (1995). An implementation of Eisner v. Macomber. In Proceedings of the fifth international conference on artificial intelligence and law (pp. 276–286). New York: ACM Press.

    Google Scholar 

  • Mochales Palau, R., & Moens, S. (2009). Argumentation mining. The detection, classification and structure of arguments in text. In Proceedings of the 12th international conference on artificial intelligence and law (ICAIL 2009) (pp. 98–107). New York: ACM Press.

    Google Scholar 

  • Modgil, S. (2005). Reasoning about preferences in argumentation frameworks. Artificial Intelligence, 173(9–10), 901–934.

    Google Scholar 

  • Nute, D. (1994). Defeasible logic. In D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence and logic programming (Non-monotonic reasoning and uncertain reasoning, Vol. 3, pp. 353–395). Oxford: Clarendon.

    Google Scholar 

  • Parsons, S., Sierra, C., & Jennings, N. R. (1998). Agents that reason and negotiate by arguing. Journal of Logic and Computation, 8, 261–292.

    Google Scholar 

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Networks of plausible inference. San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  • Pearl, J. (2009). Causality. Models, reasoning, and inference (2nd ed.). Cambridge: Cambridge University Press (1st ed. 2000).

    Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric. A treatise on argumentation. Notre Dame: University of Notre Dame Press. [trans.: Wilkinson, J. & Weaver, P. of C. Perelman and L. Olbrechts-Tyteca (1958). La nouvelle rhétorique. Traité de l’argumentation. Paris: Presses Universitaires de France].

    Google Scholar 

  • Pollock, J. L. (1987). Defeasible reasoning. Cognitive Science, 11, 481–518.

    Google Scholar 

  • Pollock, J. L. (1989). How to build a person. A prolegomenon. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Pollock, J. L. (1994). Justification and defeat. Artificial Intelligence, 67, 377–407.

    Google Scholar 

  • Pollock, J. L. (1995). Cognitive carpentry. A blueprint for how to build a person. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Pollock, J. L. (2006). Thinking about acting. Logical foundations for rational decision making. New York: Oxford University Press.

    Google Scholar 

  • Pollock, J. L. (2010). Defeasible reasoning and degrees of justification. Argument & Computation, 1(1), 7–22.

    Google Scholar 

  • Poole, D. L. (1985). On the comparison of theories. Preferring the most specific explanation. In Proceedings of the ninth international joint conference on artificial intelligence (pp. 144–147). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Prakken, H. (1993). Logical tools for modelling legal argument. Doctoral dissertation, Free University Amsterdam.

    Google Scholar 

  • Prakken, H. (1997). Logical tools for modelling legal argument. A study of defeasible reasoning in law. Dordrecht: Kluwer.

    Google Scholar 

  • Prakken, H. (2005a). A study of accrual of arguments, with applications to evidential reasoning. In Proceedings of the tenth international conference on artificial intelligence and law (pp. 85–94). New York: ACM Press.

    Google Scholar 

  • Prakken, H. (2005b). Coherence and flexibility in dialogue games for argumentation. Journal of Logic and Computation, 15, 1009–1040.

    Google Scholar 

  • Prakken, H. (2006). Formal systems for persuasion dialogue. The Knowledge Engineering Review, 21(2), 163–188.

    Google Scholar 

  • Prakken, H. (2009). Models of persuasion dialogue. In I. Rahwan & G. R. Simari (Eds.), Argumentation in artificial intelligence (pp. 281–300). Dordrecht: Springer.

    Google Scholar 

  • Prakken, H. (2010). An abstract framework for argumentation with structured arguments. Argument and Computation, 1, 93–124.

    Google Scholar 

  • Prakken, H., & Sartor, G. (1996). A dialectical model of assessing conflicting arguments in legal reasoning. Artificial Intelligence and Law, 4, 331–368.

    Google Scholar 

  • Prakken, H., & Sartor, G. (1998). Modelling reasoning with precedents in a formal dialogue game. Artificial Intelligence and Law, 6, 231–287.

    Google Scholar 

  • Prakken, H., & Sartor, G. (2007). Formalising arguments about the burden of persuasion. In Proceedings of the eleventh international conference on artificial intelligence and law (pp. 97–106). New York: ACM Press.

    Google Scholar 

  • Prakken, H., & Sartor, G. (2009). A logical analysis of burdens of proof. In H. Kaptein, H. Prakken, & B. Verheij (Eds.), Legal evidence and proof. Statistics, stories, logic (pp. 223–253). Farnham: Ashgate.

    Google Scholar 

  • Prakken, H., & Vreeswijk, G. A. W. (2002). Logics for defeasible argumentation. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 4, pp. 219–318). Dordrecht: Kluwer.

    Google Scholar 

  • Rahwan, I., & McBurney, P. (2007). Argumentation technology. Guest editors’ introduction. IEEE Intelligent Systems, 22(6), 21–23.

    Google Scholar 

  • Rahwan, I., Ramchurn, S. D., Jennings, N. R., McBurney, P., Parsons, S., & Sonenberg, E. (2003). Argumentation-based negotiation. Knowledge Engineering Review, 18(4), 343–375.

    Google Scholar 

  • Rahwan, I., & Simari, G. R. (Eds.). (2009). Argumentation in artificial intelligence. Dordrecht: Springer.

    Google Scholar 

  • Rahwan, I., Zablith, F., & Reed, C. (2007). Laying the foundations for a world wide argument web. Artificial Intelligence, 171(10–15), 897–921.

    Google Scholar 

  • Rao, A., & Georgeff, M. (1995). BDI agents. From theory to practice. In Proceedings of the 1st international conference on multi-agent systems (pp. 312–319). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Reed, C. A. (1999). The role of saliency in generating natural language arguments. In Proceedings of the 16th international joint conference on AI (IJCAI’99) (pp. 876–881). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Reed, C. A., & Grasso, F. (2007). Recent advances in computational models of natural argument. International Journal of Intelligent Systems, 22, 1–15.

    Google Scholar 

  • Reed, C. A., & Norman, T. J. (2004a). A roadmap of research in argument and computation. In C. A. Reed & T. J. Norman (Eds.), Argumentation machines. New frontiers in argument and computation (pp. 1–13). Dordrecht: Kluwer.

    Google Scholar 

  • Reed, C. A., & Norman, T. J. (Eds.). (2004b). Argumentation machines. New frontiers in argument and computation. Dordrecht: Kluwer.

    Google Scholar 

  • Reed, C. A., & Rowe, G. W. A. (2004). Araucaria. Software for argument analysis, diagramming and representation. International Journal on Artificial Intelligence Tools, 13, 961–979.

    Google Scholar 

  • Reed, C. A., & Tindale, C. W. (Eds.). (2010). Dialectics, dialogue and argumentation. An examination of Douglas Walton’s theories of reasoning. London: College Publications.

    Google Scholar 

  • Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13, 81–132.

    Google Scholar 

  • Rissland, E. L., & Ashley, K. D. (1987). A case-based system for trade secrets law. In Proceedings of the first international conference on artificial intelligence and law (pp. 60–66). New York: ACM Press.

    Google Scholar 

  • Rissland, E. L., & Ashley, K. D. (2002). A note on dimensions and factors. Artificial Intelligence and Law, 10, 65–77.

    Google Scholar 

  • Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.

    Google Scholar 

  • Riveret, R., Rotolo, A., Sartor, G., Prakken, H., & Roth, B. (2007). Success chances in argument games. A probabilistic approach to legal disputes. In A. R. Lodder & L. Mommers (Eds.), Legal knowledge and information systems (JURIX 2007) (pp. 99–108). Amsterdam: Ios Press.

    Google Scholar 

  • Roth, B. (2003). Case-based reasoning in the law. A formal theory of reasoning by case comparison. Doctoral dissertation, University of Maastricht.

    Google Scholar 

  • Sartor, G. (2005). Legal reasoning. A cognitive approach to the law (Treatise on legal philosophy and general jurisprudence, Vol. 5). Berlin: Springer.

    Google Scholar 

  • Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. M. (2010). Computer-supported argumentation. A review of the state of the art. Computer-Supported Collaborative Learning, 5, 43–102.

    Google Scholar 

  • Schwemmer, O., & Lorenzen, P. (1973). Konstruktive Logik, Ethik und Wissenschaftstheorie [Constructive logic, ethics and theory of science]. Mannheim: Bibliographisches Institut.

    Google Scholar 

  • Simari, G. R., & Loui, R. P. (1992). A mathematical treatment of defeasible reasoning and its applications. Artificial Intelligence, 53, 125–157.

    Google Scholar 

  • Suthers, D. (1999). Representational support for collaborative inquiry. In Proceedings of the 32nd Hawaii international conference on the system sciences (HICSS-32). Los Alamitos, CA: Institute of Electrical and Electronics Engineers (IEEE).

    Google Scholar 

  • Suthers, D., Weiner, A., Connelly, J., & Paolucci, M. (1995). Belvedere. Engaging students in critical discussion of science and public policy issues. In Proceedings of the 7th world conference on artificial intelligence in education (AIED ’95). Charlottesville, VA: Association for the Advancement of Computing in Education, pp. 266–273.

    Google Scholar 

  • Sycara, K. (1989). Argumentation. Planning other agents’ plans. In Proceedings of the eleventh international joint conference on artificial intelligence (pp. 517–523). San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  • Talbott, W. (2011). Bayesian epistemology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2011 ed.). http://plato.stanford.edu/archives/sum2011/entries/epistemology-bayesian/

  • Taroni, F., Aitken, C., Garbolino, P., & Biedermann, A. (2006). Bayesian networks and probabilistic inference in forensic science. Chichester: Wiley.

    Google Scholar 

  • Teufel, S. (1999). Argumentative zoning. Information extraction from scientific articles. Doctoral dissertation, University of Edinburgh.

    Google Scholar 

  • Thagard, P. (1992). Conceptual revolutions. Princeton: Princeton University Press.

    Google Scholar 

  • Toulmin, S. E. (2003). The uses of argument. Cambridge: Cambridge University Press (1st ed. 1958).

    Google Scholar 

  • Verheij, B. (1996a). Rules, reasons, arguments. Formal studies of argumentation and defeat. Doctoral dissertation, University of Maastricht.

    Google Scholar 

  • Verheij, B. (1996b). Two approaches to dialectical argumentation. Admissible sets and argumentation stages. In J.-J. C. Meyer & L. C. van der Gaag (Eds.), NAIC’96. Proceedings of the eighth Dutch conference on artificial intelligence (pp. 357–368). Utrecht: Utrecht University.

    Google Scholar 

  • Verheij, B. (2003a). DefLog. On the logical interpretation of prima facie justified assumptions. Journal of Logic and Computation, 13(3), 319–346.

    Google Scholar 

  • Verheij, B. (2003b). Dialectical argumentation with argumentation schemes. An approach to legal logic. Artificial Intelligence and Law, 11(1–2), 167–195.

    Google Scholar 

  • Verheij, B. (2005a). Evaluating arguments based on Toulmin’s scheme. Argumentation, 19, 347–371. [Reprinted in Hitchcock, D. L., & Verheij, B. (Eds.). (2006), Arguing on the Toulmin model. New essays in argument analysis and evaluation (pp. 181–202). Dordrecht: Springer].

    Google Scholar 

  • Verheij, B. (2005b). Virtual arguments. On the design of argument assistants for lawyers and other arguers. The Hague: T. M. C. Asser Press.

    Google Scholar 

  • Verheij, B. (2007). A labeling approach to the computation of credulous acceptance in argumentation. In M. M. Veloso (Ed.), IJCAI 2007, Proceedings of the 20th international joint conference on artificial intelligence (pp. 623–628). San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  • Verheij, B. (2012). Jumping to conclusions. A logico-probabilistic foundation for defeasible rule-based arguments. In L. Fariñas del Cerro, A. Herzig, & J. Mengin (Eds.), Logics in artificial intelligence. 13th European conference, JELIA 2012. Toulouse, France, September 2012. Proceedings (LNAI, Vol. 7519, pp. 411–423). Berlin: Springer.

    Google Scholar 

  • Verheij, B., Hage, J. C., & van den Herik, H. J. (1998). An integrated view on rules and principles. Artificial Intelligence and Law, 6(1), 3–26.

    Google Scholar 

  • Vreeswijk, G. A. W. (1993). Studies in defeasible argumentation. Doctoral dissertation, Free University, Amsterdam.

    Google Scholar 

  • Vreeswijk, G. A. W. (1995a). Formalizing nomic. Working on a theory of communication with modifiable rules of procedure (Technical Report CS 95–02). Maastricht: Vakgroep Informatica (FdAW), Rijksuniversiteit Limburg. http://arno.unimaas.nl/show.cgi?fid=126

  • Vreeswijk, G. A. W. (1995b). The computational value of debate in defeasible reasoning. Argumentation, 9, 305–342.

    Google Scholar 

  • Vreeswijk, G. (1997). Abstract argumentation systems. Artificial Intelligence, 90, 225–279.

    Google Scholar 

  • Vreeswijk, G. A. W. (2000). Representation of formal dispute with a standing order. Artificial Intelligence and Law, 8, 205–231.

    Google Scholar 

  • Walton, D. N., & Krabbe, E. C. W. (1995). Commitment in dialogue. Basic concepts of interpersonal reasoning. Albany: State University of New York Press.

    Google Scholar 

  • Walton, D. N., Reed, C. A., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wooldridge, M. (2009). An introduction to multiagent systems. Chichester: Wiley.

    Google Scholar 

  • Zukerman, I., McConachy, R., & Korb, K. (1998). Bayesian reasoning in an abductive mechanism for argument generation and analysis. In Proceedings of the fifteenth national conference on artificial intelligence (AAAI-98, Madison) (pp. 833–838). Menlo Park: AAAI Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans H. van Eemeren .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

van Eemeren, F.H., Garssen, B., Krabbe, E.C.W., Henkemans, A.F.S., Verheij, B., Wagemans, J.H.M. (2014). Argumentation and Artificial Intelligence. In: Handbook of Argumentation Theory. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9473-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9473-5_11

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9472-8

  • Online ISBN: 978-90-481-9473-5

  • eBook Packages: Humanities, Social Sciences and Law

Publish with us

Policies and ethics